当前位置: X-MOL 学术Build. Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The influence of airtightness on contaminant spread in MURBs in cold climates
Building Simulation ( IF 5.5 ) Pub Date : 2021-05-15 , DOI: 10.1007/s12273-021-0787-6
Philip Mckeen 1 , Zaiyi Liao 1
Affiliation  

Tall buildings in cold climates have unique challenges in maintaining indoor air quality due to stack effect. During the heating season, interior air buoyancy creates large pressure differentials in vertical shafts that can drive airflow from lower floors into upper floors. This pressure differential can result in the spread of contaminants throughout a building. Most recently, concern over COVID-19 has increased attention to the potential spread of airborne diseases in densely populated buildings. For many multi-unit residential buildings, suite ventilation has traditionally relied upon fresh air supplied through a mechanically pressurized corridor. In cold climates, large pressure differentials created by stack-effect can reduce the effectiveness of this approach. Multizone and CFD simulations are employed to analyze airflow and contaminant spread due to stack effect. Simulations are conducted on an idealized model of a 10-storey building using a range of experimentally derived airtightness parameters. Simulations demonstrate stack effect can reduce corridor ventilation to suites and even reverse the airflow for leakier buildings. Reduced airflow to suites can result in the accumulation of contaminants. Reversal of the airflow can allow contaminants from a suite to spread throughout the building. Contaminant spread is illustrated as a function of mechanical ventilation, building airtightness, and ambient temperatures. Strategies to reduce the influence of stack effect on mechanically pressurized corridors are discussed.



中文翻译:

气密性对寒冷气候下 MURBs 污染物传播的影响

由于烟囱效应,寒冷气候下的高层建筑在保持室内空气质量方面面临着独特的挑战。在供暖季节,室内空气浮力会在垂直竖井中产生巨大的压力差,从而将气流从较低楼层推向较高楼层。这种压力差会导致污染物在整个建筑物中扩散。最近,对 COVID-19 的担忧增加了人们对空气传播疾病在人口稠密建筑物中潜在传播的关注。对于许多多单元住宅建筑,套房通风传统上依赖于通过机械加压走廊供应的新鲜空气。在寒冷的气候中,由烟囱效应产生的大压力差会降低这种方法的有效性。多区域和 CFD 模拟用于分析由于烟囱效应引起的气流和污染物扩散。使用一系列实验得出的气密性参数,对 10 层楼的理想模型进行了模拟。模拟表明烟囱效应可以减少套房的走廊通风,甚至可以逆转漏水建筑物的气流。减少进入套房的气流会导致污染物的积累。气流的逆转可以使来自套房的污染物扩散到整个建筑物中。污染物扩散被说明为机械通风、建筑气密性和环境温度的函数。讨论了减少烟囱效应对机械加压走廊的影响的策略。使用一系列实验得出的气密性参数,对 10 层楼的理想模型进行了模拟。模拟表明烟囱效应可以减少套房的走廊通风,甚至可以逆转漏水建筑物的气流。减少进入套房的气流会导致污染物的积累。气流的逆转可以使来自套房的污染物扩散到整个建筑物中。污染物扩散被说明为机械通风、建筑气密性和环境温度的函数。讨论了减少烟囱效应对机械加压走廊的影响的策略。使用一系列实验得出的气密性参数,对 10 层楼的理想模型进行了模拟。模拟表明烟囱效应可以减少套房的走廊通风,甚至可以逆转漏水建筑物的气流。减少进入套房的气流会导致污染物的积累。气流的逆转可以使来自套房的污染物扩散到整个建筑物中。污染物扩散被说明为机械通风、建筑气密性和环境温度的函数。讨论了减少烟囱效应对机械加压走廊的影响的策略。模拟表明烟囱效应可以减少套房的走廊通风,甚至可以逆转漏水建筑物的气流。减少进入套房的气流会导致污染物的积累。气流的逆转可以使来自套房的污染物扩散到整个建筑物中。污染物扩散被说明为机械通风、建筑气密性和环境温度的函数。讨论了减少烟囱效应对机械加压走廊的影响的策略。模拟表明烟囱效应可以减少套房的走廊通风,甚至可以逆转漏水建筑物的气流。减少进入套房的气流会导致污染物的积累。气流的逆转可以使来自套房的污染物扩散到整个建筑物中。污染物扩散被说明为机械通风、建筑气密性和环境温度的函数。讨论了减少烟囱效应对机械加压走廊的影响的策略。

更新日期:2021-05-15
down
wechat
bug