当前位置: X-MOL 学术J. Sol-Gel Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Grain size engineering and growth mechanism in hydrothermal synthesis of Bi0.5Na0.5TiO3 thin films on Nb-doped SrTiO3 substrates
Journal of Sol-Gel Science and Technology ( IF 2.5 ) Pub Date : 2021-07-16 , DOI: 10.1007/s10971-021-05586-y
Fujun Chen 1, 2, 3 , Hao Qian 1, 2, 3 , Xiaoyuan Sun 1, 2, 3 , Mu Song 1, 2, 3 , Yunfei Liu 1, 2, 3 , Yinong Lyu 1, 2, 3
Affiliation  

Considering the full utilization of energy and pursuing thin-film capacitors with high energy-storage density, the grain size engineering is used to adjust domain size, in order to enhance the energy-storage efficiency and energy-storage density of thin-film capacitors. Therefore, in this work, lead-free Bi0.5Na0.5TiO3 (BNT) films with designed grain size were grown on Nb-doped SrTiO3 (Nb:STO) (001) single-crystalline substrates by modulating the mineralizer concentrations via hydrothermal synthesis. The nature of epitaxial growth near the single-crystalline substrates was proved by transmission electron microscopy (TEM). In addition, the phenomenon of the decrease of grain size and the increase of [100] in-plane orientation with the decline of mineralizer concentrations were clarified by grazing-angle incidence X-ray diffraction (GIXRD) and field emission scanning electron microscope (FESEM). By reducing the grain size, an ultrahigh energy-storage efficiency (η) of 75.56% and superior the recoverable energy-storage density (Wrec) of 16.47 J/cm3 were acquired in pure Bi0.5Na0.5TiO3 films. Furthermore, the fine-grained film exhibits weak dependence on the frequency and has excellent anti-fatigue property. Therefore, hydrothermal synthesis is an efficient, inexpensive, and easy method, which is the most promising way to adjust grain size and energy storage of the film capacitor.



中文翻译:

Nb掺杂SrTiO3衬底上Bi0.5Na0.5TiO3薄膜水热合成中的晶粒尺寸工程和生长机制

考虑到能量的充分利用,追求高储能密度的薄膜电容器,通过晶粒尺寸工程来调整畴尺寸,以提高薄膜电容器的储能效率和储能密度。因此,在这项工作中,在 Nb 掺杂的 SrTiO 3上生长了具有设计晶粒尺寸的无铅 Bi 0.5 Na 0.5 TiO 3 (BNT)薄膜。(Nb:STO) (001) 单晶基质通过水热合成调节矿化剂浓度。透射电子显微镜 (TEM) 证明了单晶衬底附近外延生长的性质。此外,通过掠角入射X射线衍射(GIXRD)和场发射扫描电子显微镜(FESEM)阐明了随着矿化剂浓度的降低晶粒尺寸减小和[100]面内取向增加的现象。 )。通过减小晶粒尺寸,在纯 Bi 0.5 Na 0.5中获得了 75.56%的超高储能效率 ( η ) 和16.47 J/cm 3 的优异可恢复储能密度 ( W rec )TiO 3薄膜。此外,细粒薄膜对频率的依赖性较弱,具有优异的抗疲劳性能。因此,水热合成是一种高效、廉价、简便的方法,是调整薄膜电容器晶粒尺寸和储能最有前途的方法。

更新日期:2021-07-16
down
wechat
bug