当前位置: X-MOL 学术Phys. Rev. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scaling of hypersonic shock/turbulent boundary layer interactions
Physical Review Fluids ( IF 2.7 ) Pub Date : 2021-07-16 , DOI: 10.1103/physrevfluids.6.074607
Clara M. Helm , M. P. Martín

A separation length scaling method for shock/turbulent boundary layer interactions (STBLIs) is considered. A modification of the scaling method of Souverein et al. [J. Fluid Mech. 714, 505 (2013)] is introduced to account for heat transfer effects. As a further generalization of the model, a control volume analysis applied to a cylinder-with-flare geometry demonstrates that this axisymmetric geometry scales with the same parameters as the two-dimensional interactions. The current modified scaling is evaluated for a large range of STBLI conditions. A database of STBLI flows at Mach 2–3 has been collected from the available literature and includes both reflected shock and compression ramp data with various wall heat transfer conditions. A new Large Eddy Simulation database of Mach 7 and Mach 10 cold wall compression ramp flows with parametrically varying ramp angle is also utilized. In addition, the Mach 10 compression ramp experiments of Elfstrom [J. Fluid Mech. 53, 113 (1972)] as well as the Mach 10 cylinder-with-flare experiments of Coleman (Ph.D. thesis, University of London, 1973) and Brooks et al. (AIAA Paper No. 2017-3325, 2017) are included in the evaluation. It is shown that this new generalized scaling method results in a linear collapse of all incipiently separated STBLI data. No collapse is observed for fully separated interactions. Arguments for the physical mechanisms affecting the separation length scaling for the two STBLI regimes, incipient and fully separated, that are consistent with the data trends are presented. Namely, for incipient cases, the distribution of momentum in the incoming boundary layer is key to separation length scaling. In contrast, for fully separated cases, we postulate that the presence and strength of inviscid vortical structures significantly affects the separation length. Furthermore, we postulate how the distinct flow dynamics of the boundary layer and of the inviscid vortical structures mechanisms found in STBLI interplay and become dominant over the other.

中文翻译:

高超声速激波/湍流边界层相互作用的缩放

考虑了冲击/湍流边界层相互作用 (STBLI) 的分离长度缩放方法。Souverein等人的缩放方法的修改[ J. 流体机械。 714, 505 (2013)] 被引入以解释传热效应。作为该模型的进一步推广,应用于带有扩口的圆柱体几何结构的控制体积分析表明,这种轴对称几何结构具有与二维相互作用相同的参数。当前修改的比例是针对大范围的 STBLI 条件进行评估的。已从现有文献中收集了 2-3 马赫的 STBLI 流量数据库,其中包括具有各种壁面传热条件的反射冲击和压缩斜坡数据。还使用了一个新的大型涡流模拟数据库,该数据库包含参数变化的斜坡角的 7 马赫和 10 马赫冷壁压缩斜坡流。此外,Elfstrom 的 10 马赫压缩斜坡实验 [ J. Fluid Mech. 53, 113 (1972)] 以及 Coleman(博士论文,伦敦大学,1973 年)和 Brooks等人的10 马赫圆柱火炬实验(AIAA Paper No. 2017-3325, 2017) 被纳入评估。结果表明,这种新的广义缩放方法导致所有初始分离的 STBLI 数据线性崩溃。对于完全分离的相互作用没有观察到坍塌。提出了影响两个 STBLI 制度(初期和完全分离)的分离长度缩放的物理机制的论点,这些论点与数据趋势一致。即,对于初始情况,传入边界层中的动量分布是分离长度缩放的关键。相反,对于完全分离的情况,我们假设无粘性涡旋结构的存在和强度显着影响分离长度。此外,
更新日期:2021-07-16
down
wechat
bug