当前位置: X-MOL 学术J. Comput. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Feynman-Kac based numerical method for the exit time probability of a class of transport problems
Journal of Computational Physics ( IF 4.1 ) Pub Date : 2021-07-16 , DOI: 10.1016/j.jcp.2021.110564
Minglei Yang , Guannan Zhang , Diego del-Castillo-Negrete , Miroslav Stoyanov

The exit time probability, which gives the likelihood that an initial condition leaves a prescribed region of the phase space of a dynamical system at, or before, a given time, is arguably one of the most natural and important transport problems. Here we present an accurate and efficient numerical method for computing this probability for systems described by non-autonomous (time-dependent) stochastic differential equations (SDEs) or their equivalent Fokker-Planck partial differential equations. The method is based on the direct approximation of the Feynman-Kac formula that establishes a link between the adjoint Fokker-Planck equation and the forward SDE. The Feynman-Kac formula is approximated using the Gauss-Hermite quadrature rules and piecewise cubic Hermite interpolating polynomials, and a GPU accelerated matrix representation is used to compute the entire time evolution of the exit time probability using a single pass of the algorithm. The method is unconditionally stable, exhibits second order convergence in space, first order convergence in time, and it is straightforward to parallelize. Applications are presented to the advection diffusion of a passive tracer in a fluid flow exhibiting chaotic advection, and to the runaway acceleration of electrons in a plasma in the presence of an electric field, collisions, and radiation damping. Benchmarks against analytical solutions as well as comparisons with explicit and implicit finite difference standard methods for the adjoint Fokker-Planck equation are presented.



中文翻译:

基于Feynman-Kac的一类运输问题退出时间概率的数值方法

退出时间概率给出了初始条件在给定时间或之前离开动力系统相空间的指定区域的可能性,可以说是最自然和最重要的传输问题之一。在这里,我们提出了一种准确有效的数值方法,用于计算由非自治(时间相关)随机微分方程 (SDE) 或其等效 Fokker-Planck 偏微分方程描述的系统的概率。该方法基于 Feynman-Kac 公式的直接近似,该公式在伴随 Fokker-Planck 方程和前向 SDE 之间建立联系。Feynman-Kac 公式使用 Gauss-Hermite 求积规则和分段三次 Hermite 插值多项式近似,并且使用 GPU 加速矩阵表示来计算退出时间概率的整个时间演变,使用该算法的单次传递。该方法无条件稳定,在空间上表现出二阶收敛性,在时间上表现出一阶收敛性,并且易于并行化。介绍了无源示踪剂在表现出混沌对流的流体流中的对流扩散,以及在存在电场、碰撞和辐射阻尼的情况下等离子体中电子的失控加速。提出了针对伴随 Fokker-Planck 方程的解析解的基准以及与显式和隐式有限差分标准方法的比较。该方法无条件稳定,在空间上表现出二阶收敛性,在时间上表现出一阶收敛性,并且易于并行化。介绍了无源示踪剂在表现出混沌对流的流体流中的对流扩散,以及在存在电场、碰撞和辐射阻尼的情况下等离子体中电子的失控加速。提出了针对伴随 Fokker-Planck 方程的解析解的基准以及与显式和隐式有限差分标准方法的比较。该方法无条件稳定,在空间上表现出二阶收敛性,在时间上表现出一阶收敛性,并且易于并行化。介绍了无源示踪剂在表现出混沌对流的流体流中的对流扩散,以及在存在电场、碰撞和辐射阻尼的情况下等离子体中电子的失控加速。提出了针对伴随 Fokker-Planck 方程的解析解的基准以及与显式和隐式有限差分标准方法的比较。以及在存在电场、碰撞和辐射阻尼的情况下,等离子体中电子的失控加速。提出了针对伴随 Fokker-Planck 方程的解析解的基准以及与显式和隐式有限差分标准方法的比较。以及在存在电场、碰撞和辐射阻尼的情况下,等离子体中电子的失控加速。提出了针对伴随 Fokker-Planck 方程的解析解的基准以及与显式和隐式有限差分标准方法的比较。

更新日期:2021-08-03
down
wechat
bug