当前位置: X-MOL 学术arXiv.cs.NI › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
EICO: Energy-Harvesting Long-Range Environmental Sensor Nodes with Energy-Information Dynamic Co-Optimization
arXiv - CS - Networking and Internet Architecture Pub Date : 2021-07-15 , DOI: arxiv-2107.07072
Shitij Avlani, Donghyun Seo, Baibhab Chatterjee, Shreyas Sen

Intensive research on energy harvested sensor nodes with traditional battery powered devices has been driven by the challenges in achieving the stringent design goals of battery lifetime, information accuracy, transmission distance, and cost. This challenge is further amplified by the inherent power intensive nature of long-range communication when sensor networks are required to span vast areas such as agricultural fields and remote terrain. Solar power is a common energy source is wireless sensor nodes, however, it is not reliable due to fluctuations in power stemming from the changing seasons and weather conditions. This paper tackles these issues by presenting a perpetually-powered, energy-harvesting sensor node which utilizes a minimally sized solar cell and is capable of long range communication by dynamically co-optimizing energy consumption and information transfer, termed as Energy-Information Dynamic Co-Optimization (EICO). This energy-information intelligence is achieved by adaptive duty cycling of information transfer based on the total amount of energy available from the harvester and charge storage element to optimize the energy consumption of the sensor node, while employing in-sensor analytics (ISA) to minimize loss of information. This is the first reported sensor node < 35cm2 in dimension, which is capable of long-range communication over > 1Km at continuous information transfer rates of upto 1 packet/second which is enabled by EICO and ISA.

中文翻译:

EICO:具有能量信息动态协同优化的能量收集远程环境传感器节点

在实现电池寿命、信息准确性、传输距离和成本等严格设计目标方面面临的挑战,推动了对具有传统电池供电设备的能量收集传感器节点的深入研究。当传感器网络需要跨越大片区域(如农田和偏远地区)时,远程通信固有的功率密集特性进一步加剧了这一挑战。太阳能是无线传感器节点的常见能源,但是由于季节和天气条件的变化导致功率波动,因此它不可靠。本文通过提出一个永久供电的、能量收集传感器节点利用最小尺寸的太阳能电池,能够通过动态协同优化能源消耗和信息传输进行长距离通信,称为能量信息动态协同优化 (EICO)。这种能源信息智能是通过基于收集器和电荷存储元件的可用能量总量的信息传输自适应占空比来实现的,以优化传感器节点的能耗,同时采用传感器内分析 (ISA) 来最小化信息丢失。这是第一个报告的尺寸小于 35cm2 的传感器节点,它能够以高达 1 包/秒的连续信息传输速率进行大于 1 公里的远程通信,这是由 EICO 和 ISA 实现的。称为能量信息动态协同优化 (EICO)。这种能源信息智能是通过基于收集器和电荷存储元件的可用能量总量的信息传输自适应占空比来实现的,以优化传感器节点的能耗,同时采用传感器内分析 (ISA) 来最小化信息丢失。这是第一个报告的尺寸小于 35cm2 的传感器节点,它能够以高达 1 包/秒的连续信息传输速率进行大于 1 公里的远程通信,这是由 EICO 和 ISA 实现的。称为能量信息动态协同优化 (EICO)。这种能源信息智能是通过基于收集器和电荷存储元件的可用能量总量的信息传输自适应占空比来实现的,以优化传感器节点的能耗,同时采用传感器内分析 (ISA) 来最小化信息丢失。这是第一个报告的尺寸小于 35cm2 的传感器节点,它能够以高达 1 包/秒的连续信息传输速率进行大于 1 公里的远程通信,这是由 EICO 和 ISA 实现的。这种能源信息智能是通过基于收集器和电荷存储元件的可用能量总量的信息传输自适应占空比来实现的,以优化传感器节点的能耗,同时采用传感器内分析 (ISA) 来最小化信息丢失。这是第一个报告的尺寸小于 35cm2 的传感器节点,它能够以高达 1 包/秒的连续信息传输速率进行大于 1 公里的远程通信,这是由 EICO 和 ISA 实现的。这种能源信息智能是通过基于收集器和电荷存储元件的可用能量总量的信息传输自适应占空比来实现的,以优化传感器节点的能耗,同时采用传感器内分析 (ISA) 来最小化信息丢失。这是第一个报告的尺寸小于 35cm2 的传感器节点,它能够以高达 1 包/秒的连续信息传输速率进行大于 1 公里的远程通信,这是由 EICO 和 ISA 实现的。
更新日期:2021-07-16
down
wechat
bug