当前位置: X-MOL 学术Biochem. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mapping the substrate specificity of the Plasmodium M1 and M17 aminopeptidases
Biochemical Journal ( IF 4.1 ) Pub Date : 2021-07-16 , DOI: 10.1042/bcj20210172
Tess R Malcolm 1 , Karolina W Swiderska 2 , Brooke K Hayes 1 , Chaille T Webb 1 , Marcin Drag 2 , Nyssa Drinkwater 1 , Sheena McGowan 1
Affiliation  

During malarial infection, Plasmodium parasites digest human hemoglobin to obtain free amino acids for protein production and maintenance of osmotic pressure. The Plasmodium M1 and M17 aminopeptidases are both postulated to have an essential role in the terminal stages of the hemoglobin digestion process and are validated drug targets for the design of new dual-target anti-malarial compounds. In this study, we profiled the substrate specificity fingerprints and kinetic behaviors of M1 and M17 aminopeptidases from Plasmodium falciparum and Plasmodium vivax, and the mouse model species, Plasmodium berghei. We found that although the Plasmodium M1 aminopeptidases share a largely similar, broad specificity at the P1 position, the P. falciparum M1 displays the greatest diversity in specificity and P. berghei M1 showing a preference for charged P1 residues. In contrast, the Plasmodium M17 aminopeptidases share a highly conserved preference for hydrophobic residues at the P1 position. The aminopeptidases also demonstrated intra-peptide sequence specificity, particularly the M1 aminopeptidases, which showed a definitive preference for peptides with fewer negatively charged intrapeptide residues. Overall, the P. vivax and P. berghei enzymes had a faster substrate turnover rate than the P. falciparum enzymes, which we postulate is due to subtle differences in structural dynamicity. Together, these results build a kinetic profile that allows us to better understand the catalytic nuances of the M1 and M17 aminopeptidases from different Plasmodium species.

中文翻译:

绘制疟原虫 M1 和 M17 氨肽酶的底物特异性

在疟疾感染期间,疟原虫会消化人类血红蛋白以获得游离氨基酸,用于生产蛋白质和维持渗透压。疟原虫 M1 和 M17 氨肽酶都被假定在血红蛋白消化过程的末期发挥重要作用,并且是设计新的双靶点抗疟疾化合物的有效药物靶点。在这项研究中,我们分析了来自恶性疟原虫和间日疟原虫以及小鼠模型物种伯氏疟原虫的 M1 和 M17 氨肽酶的底物特异性指纹和动力学行为。我们发现,虽然疟原虫 M1 氨肽酶在 P1 位置具有大致相似的广泛特异性,但恶性疟原虫 M1 在特异性方面表现出最大的多样性,而 P. berghei M1 显示出对带电 P1 残基的偏好。相比之下,疟原虫 M17 氨肽酶对 P1 位置的疏水残基具有高度保守的偏好。氨肽酶还表现出肽内序列的特异性,特别是 M1 氨肽酶,它显示出对带负电荷肽内残基较少的肽的明确偏好。总体而言,间日疟原虫和伯氏疟原虫酶比恶性疟原虫酶具有更快的底物周转率,我们假设这是由于结构动力学的细微差异。总之,这些结果建立了一个动力学特征,使我们能够更好地了解来自不同疟原虫物种的 M1 和 M17 氨肽酶的催化细微差别。疟原虫 M17 氨肽酶对 P1 位置的疏水残基具有高度保守的偏好。氨肽酶还表现出肽内序列的特异性,特别是 M1 氨肽酶,它显示出对带负电荷肽内残基较少的肽的明确偏好。总体而言,间日疟原虫和伯氏疟原虫酶比恶性疟原虫酶具有更快的底物周转率,我们假设这是由于结构动力学的细微差异。总之,这些结果建立了一个动力学特征,使我们能够更好地了解来自不同疟原虫物种的 M1 和 M17 氨肽酶的催化细微差别。疟原虫 M17 氨肽酶对 P1 位置的疏水残基具有高度保守的偏好。氨肽酶还表现出肽内序列的特异性,特别是 M1 氨肽酶,它显示出对带负电荷肽内残基较少的肽的明确偏好。总体而言,间日疟原虫和伯氏疟原虫酶比恶性疟原虫酶具有更快的底物周转率,我们假设这是由于结构动力学的细微差异。总之,这些结果建立了一个动力学特征,使我们能够更好地了解来自不同疟原虫物种的 M1 和 M17 氨肽酶的催化细微差别。这显示出对带负电荷肽内残基较少的肽的明确偏好。总体而言,间日疟原虫和伯氏疟原虫酶比恶性疟原虫酶具有更快的底物周转率,我们假设这是由于结构动力学的细微差异。总之,这些结果建立了一个动力学特征,使我们能够更好地了解来自不同疟原虫物种的 M1 和 M17 氨肽酶的催化细微差别。这显示出对带负电荷肽内残基较少的肽的明确偏好。总体而言,间日疟原虫和伯氏疟原虫酶比恶性疟原虫酶具有更快的底物周转率,我们假设这是由于结构动力学的细微差异。总之,这些结果建立了一个动力学特征,使我们能够更好地了解来自不同疟原虫物种的 M1 和 M17 氨肽酶的催化细微差别。
更新日期:2021-07-16
down
wechat
bug