当前位置: X-MOL 学术Shock Waves › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of the reactor model on steady detonation modeling
Shock Waves ( IF 2.2 ) Pub Date : 2021-07-15 , DOI: 10.1007/s00193-021-01022-w
K. P. Chatelain 1 , D. A. Lacoste 1 , Y. He 2, 3 , R. Mével 2, 3
Affiliation  

The effect of employing four different reactor models, Zeldovich–von Neumann–Döring (ZND), constant volume (CV), constant pressure (CP), and the Shock routine from Chemkin, to perform detonation-relevant chemical modeling was assessed. The simulation results were compared in terms of characteristic length scales and chemical analyses with four representative mixtures: \(\hbox {H}_{2}{-}\hbox {O}_{2}{-}\hbox {N}_{2}\), \(\hbox {H}_{2}{-}\hbox {NO}_{2}/{\hbox {N}_{2}}{\hbox {O}_{4}}\), \({\hbox {C}_{3}}{\hbox {H}_{8}}{-}\hbox {O}_{2}{-}\hbox {N}_{2}\), and dimethyl ether (DME)–\(\hbox {O}_{2}{-}\hbox {CO}_{2}\). The following conclusions were drawn: (i) CV and CP reactor models shorten the induction zone length and strengthen the energy release rate in most mixtures. In terms of chemical kinetics, the impact of CP and CV reactor models is quite limited for \(\hbox {H}_{2}{-}\hbox {O}_{2}{-}\hbox {N}_{2}\) and \(\hbox {H}_{2}{-}\hbox {NO}_{2}/{\hbox {N}_{2}}{\hbox {O}_{4}}\) mixtures. However, the C2 branch is enhanced in CV and CP reactor models for \({\hbox {C}_{3}}{\hbox {H}_{8}}{-}\hbox {O}_{2}{-}\hbox {N}_{2}\) mixture. Moreover, both reactor models weaken the intermediate-temperature chemistry and promote the high-temperature chemistry for DME–\(\hbox {O}_{2}{-}\hbox {CO}_{2}\) mixtures; (ii) the Shock module can be employed to perform detonation modeling, as it provided similar results to the ZND simulations for all investigated mixtures; and (iii) the ZND reactor model is preferred over the zero-dimensional reactor models, while the Shock module of ANSYS is equivalent to the ZND reactor.



中文翻译:

反应堆模型对稳定爆震模型的影响

评估了采用四种不同的反应器模型、Zeldovich-von Neumann-Döring (ZND)、恒定体积 (CV)、恒定压力 (CP) 和来自 Chemkin 的 Shock 程序来执行与爆炸相关的化学建模的效果。模拟结果在特征长度尺度和化学分析方面与四种代表性混合物进行了比较:\(\hbox {H}_{2}{-}\hbox {O}_{2}{-}\hbox {N} _{2}\) , \(\hbox {H}_{2}{-}\hbox {NO}_{2}/{\hbox {N}_{2}}{\hbox {O}_{ 4}}\) , \({\hbox {C}_{3}}{\hbox {H}_{8}}{-}\hbox {O}_{2}{-}\hbox {N} _{2}\)和二甲醚 (DME)– \(\hbox {O}_{2}{-}\hbox {CO}_{2}\). 得出以下结论: (i) CV 和 CP 反应器模型缩短了诱导区长度并增强了大多数混合物的能量释放率。在化学动力学方面,CP 和 CV 反应器模型对\(\hbox {H}_{2}{-}\hbox {O}_{2}{-}\hbox {N}_ {2}\)\(\hbox {H}_{2}{-}\hbox {NO}_{2}/{\hbox {N}_{2}}{\hbox {O}_{4 }}\)混合物。然而,C2 分支在 CV 和 CP 反应器模型中得到增强,用于\({\hbox {C}_{3}}{\hbox {H}_{8}}{-}\hbox {O}_{2} {-}\hbox {N}_{2}\)混合物。此外,两种反应器模型都削弱了中温化学并促进了二甲醚的高温化学– \(\hbox {O}_{2}{-}\hbox {CO}_{2}\)混合物;(ii) Shock 模块可用于执行爆震建模,因为它为所有研究的混合物提供了与 ZND 模拟相似的结果;(iii) ZND 反应器模型优于零维反应器模型,而 ANSYS 的 Shock 模块等效于 ZND 反应器。

更新日期:2021-07-15
down
wechat
bug