当前位置: X-MOL 学术Mech. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large strain flow curve identification for sheet metals under complex stress states
Mechanics of Materials ( IF 3.9 ) Pub Date : 2021-07-15 , DOI: 10.1016/j.mechmat.2021.103997
Chong Zhang 1 , Yanshan Lou 1 , Saijun Zhang 2 , Till Clausmeyer 3 , A. Erman Tekkaya 3 , Lei Fu 4 , Qiang Chen 5 , Qi Zhang 1
Affiliation  

Strain hardening behaviours at large strain under various loading conditions are the basic but the most important input for reliable numerical simulation of plastic deformation processes, such as sheet metal forming and crash. However, neither the flow curve at large strain beyond necking nor the strain hardening under stress states different from uniaxial tension can be reasonably characterized by the widely employed tensile tests of dogbone specimens. In this study, various experimental methods are investigated to characterize strain hardening behaviours up to large deformation under different stress states for an aluminium alloy sheet of AA5182-O. The experiments conducted include tensile tests of four different specimens (e.g. dog-bone specimen, notched specimen, specimen with a central hole and in-plane shear specimen), bulge tests and twin bridge shear tests. These tests cover wide stress states ranging from shear to equibiaxial tension. Strain hardening is obtained by both analytical computation and an inverse engineering approach under different loading conditions of shear, uniaxial tension, plane strain tension and equibiaxial tension. These two approaches are evaluated by comparing the obtained stress-strain curves under different loading conditions. The evaluation shows that the inverse engineering approach is an effective method to characterize the stress-strain curve up to large plastic deformation till fracture for tests with inhomogeneous deformation. The results also reveal that it needs to develop advanced yield functions to model yielding and hardening behaviours under complex stress states.



中文翻译:

复杂应力状态下钣金大应变流曲线辨识

各种载荷条件下大应变下的应变硬化行为是对塑性变形过程(如钣金成形和碰撞)进行可靠数值模拟的基本但最重要的输入。然而,无论是在超过颈缩的大应变下的流动曲线,还是在不同于单轴拉伸的应力状态下的应变硬化,都不能通过广泛采用的狗骨试样拉伸试验来合理地表征。在这项研究中,研究了各种实验方法来表征 AA5182-O 铝合金板在不同应力状态下直至大变形的应变硬化行为。进行的实验包括四种不同试样的拉伸试验(例如狗骨试样、缺口试样、带中心孔的试样和面内剪切试样),膨胀试验和双桥剪切试验。这些测试涵盖了从剪切到等双轴拉伸的广泛应力状态。在剪切、单轴拉伸、平面应变拉伸和等双轴拉伸的不同载荷条件下,通过解析计算和逆向工程方法获得应变硬化。通过比较不同加载条件下获得的应力-应变曲线来评估这两种方法。评估表明,逆向工程方法是表征应力-应变曲线直至大塑性变形直至断裂的非均匀变形试验的有效方法。结果还表明,需要开发高级屈服函数来模拟复杂应力状态下的屈服和硬化行为。这些测试涵盖了从剪切到等双轴拉伸的广泛应力状态。在剪切、单轴拉伸、平面应变拉伸和等双轴拉伸的不同载荷条件下,通过解析计算和逆向工程方法获得应变硬化。通过比较不同加载条件下获得的应力-应变曲线来评估这两种方法。评估表明,逆向工程方法是表征应力-应变曲线直至大塑性变形直至断裂的非均匀变形试验的有效方法。结果还表明,它需要开发高级屈服函数来模拟复杂应力状态下的屈服和硬化行为。这些测试涵盖了从剪切到等双轴拉伸的广泛应力状态。在剪切、单轴拉伸、平面应变拉伸和等双轴拉伸的不同载荷条件下,通过解析计算和逆向工程方法获得应变硬化。通过比较不同加载条件下获得的应力-应变曲线来评估这两种方法。评估表明,逆向工程方法是表征应力-应变曲线直至大塑性变形直至断裂的非均匀变形试验的有效方法。结果还表明,它需要开发高级屈服函数来模拟复杂应力状态下的屈服和硬化行为。在剪切、单轴拉伸、平面应变拉伸和等双轴拉伸的不同载荷条件下,通过解析计算和逆向工程方法获得应变硬化。通过比较不同加载条件下获得的应力-应变曲线来评估这两种方法。评估表明,逆向工程方法是表征应力-应变曲线直至大塑性变形直至断裂的非均匀变形试验的有效方法。结果还表明,它需要开发高级屈服函数来模拟复杂应力状态下的屈服和硬化行为。在剪切、单轴拉伸、平面应变拉伸和等双轴拉伸的不同载荷条件下,通过解析计算和逆向工程方法获得应变硬化。通过比较不同加载条件下获得的应力-应变曲线来评估这两种方法。评估表明,逆向工程方法是表征应力-应变曲线直至大塑性变形直至断裂的非均匀变形试验的有效方法。结果还表明,它需要开发高级屈服函数来模拟复杂应力状态下的屈服和硬化行为。通过比较不同加载条件下获得的应力-应变曲线来评估这两种方法。评估表明,逆向工程方法是表征应力-应变曲线直至大塑性变形直至断裂的非均匀变形试验的有效方法。结果还表明,它需要开发高级屈服函数来模拟复杂应力状态下的屈服和硬化行为。通过比较不同加载条件下获得的应力-应变曲线来评估这两种方法。评估表明,逆向工程方法是表征应力-应变曲线直至大塑性变形直至断裂的非均匀变形试验的有效方法。结果还表明,它需要开发高级屈服函数来模拟复杂应力状态下的屈服和硬化行为。

更新日期:2021-07-26
down
wechat
bug