当前位置: X-MOL 学术J. Sandw. Struct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting failure modes of 3D-printed multi-material polymer sandwich structures from process parameters
Journal of Sandwich Structures & Materials ( IF 3.9 ) Pub Date : 2021-07-14 , DOI: 10.1177/10996362211020445
David L Edelen 1 , Hugh A Bruck 2
Affiliation  

The emergence of additive manufacturing (AM) technologies, such as fused deposition modeling (FDM), have enabled the realization of structures with superior mechanical performance through lightweighting and multi-material architectures. However, the complexity associated with the internal geometric features and potential material configurations have also presented new challenges in designing these structures to optimize mechanical performance. In particular, the failure mechanisms and their relationship to the load bearing capacity of the structures may vary compared to analogous structures designed using conventional manufacturing techniques. In this work, we investigate failure modes of 3 D-printed (3DP) multi-material polymer sandwich beam structures manufactured from acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) materials and subjected to three-point bend loading. Digital Image Correlation (DIC) is utilized to understand the effects of different process parameters on the mechanical response of the 3DP structures. ABS and PC dogbone tensile specimens were printed to establish the baseline properties in tension with varying raster angles and infill patterns. Multi-material sandwich beam structures were then printed with honeycomb cores using different processing and architectural parameters, and the failure modes and loads of these structures were compared with predications from a failure model for sandwich structures that accounts for the following conventional failure modes: (1) indentation, (2) face sheet bending, (3) core bending, and (4) core shear. With minor changes in the processing and geometric parameters, failure modes could be shifted from the face sheets to core bending and core shear, as evidenced by the DIC strain field measurements, and the corresponding max load-to-weight ratios could be increased. Estimations of the tensile properties of the face sheets and core were found to be sufficiently accurate when combining classical lamination theory (CLT) and rule-of-mixtures (ROM) models, while the failure model also predicted the load bearing capacity and failure mode in three-point bending with reasonable accuracy.



中文翻译:

从工艺参数预测 3D 打印多材料聚合物夹层结构的失效模式

增材制造 (AM) 技术的出现,例如熔融沉积建模 (FDM),通过轻量化和多材料架构实现了具有卓越机械性能的结构。然而,与内部几何特征和潜在材料配置相关的复杂性也给设计这些结构以优化机械性能带来了新的挑战。特别是,与使用传统制造技术设计的类似结构相比,失效机制及其与结构承载能力的关系可能会有所不同。在这项工作中,我们研究了由丙烯腈丁二烯苯乙烯 (ABS) 和聚碳酸酯 (PC) 材料制成并承受三点弯曲载荷的 3D 打印 (3DP) 多材料聚合物夹层梁结构的失效模式。数字图像相关 (DIC) 用于了解不同工艺参数对 3DP 结构机械响应的影响。打印 ABS 和 PC 狗骨拉伸试样,以建立具有不同光栅角度和填充图案的拉伸基线特性。然后使用不同的加工和建筑参数用蜂窝芯打印多材料夹层梁结构,并将这些结构的失效模式和载荷与夹层结构失效模型的预测进行比较,该模型解释了以下常规失效模式:(1) 压痕,(2) 面板弯曲,(3) 芯弯曲,和 (4) 芯剪切。随着加工和几何参数的微小变化,失效模式可以从面板转移到核心弯曲和核心剪切,正如 DIC 应变场测量所证明的那样,并且相应的最大负载重量比可以增加。当结合经典层压理论 (CLT) 和混合规则 (ROM) 模型时,发现面板和芯的拉伸性能的估计足够准确,而失效模型还预测了承载能力和失效模式以合理的精度进行三点弯曲。正如 DIC 应变场测量所证明的那样,失效模式可以从面板转移到核心弯曲和核心剪切,并且可以增加相应的最大负载重量比。当结合经典层压理论 (CLT) 和混合规则 (ROM) 模型时,发现面板和芯的拉伸性能的估计足够准确,而失效模型还预测了承载能力和失效模式以合理的精度进行三点弯曲。正如 DIC 应变场测量所证明的那样,失效模式可以从面板转移到核心弯曲和核心剪切,并且可以增加相应的最大负载重量比。当结合经典层压理论 (CLT) 和混合规则 (ROM) 模型时,发现面板和芯的拉伸性能的估计足够准确,而失效模型还预测了承载能力和失效模式以合理的精度进行三点弯曲。

更新日期:2021-07-14
down
wechat
bug