当前位置: X-MOL 学术Math. Models Comput. Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Study of the Gradient-Drift Instability’s Growth Rate at the Fronts of Equatorial Plasma Bubbles
Mathematical Models and Computer Simulations Pub Date : 2021-07-14 , DOI: 10.1134/s2070048221040141
N. M. Kashchenko 1 , S. A. Ishanov 1 , S. V. Matsievsky 1
Affiliation  

Abstract

Ground-based and satellite measurements, as well as numerical modeling of the spatial structure of the equatorial ionospheric bubbles are carried out quite intensively. These data show that the longitudinal and altitudinal gradients of the logarithm of the electron concentration at the vertical boundaries of the bubbles can reach values of 0.001 1/m and 0.0001 1/m, respectively. With such gradients of electron concentration, the development of a gradient-drift instability (GDI) is possible. This instability can generate ionospheric plasma irregularities with space-time scales characteristic of equatorial F-scattering. This article presents the results of calculating the growth rates of the GDI at the boundaries of ionospheric bubbles. The space-time structure of equatorial plasma bubbles (EPBs) is obtained by numerical simulation. This simulation is based on a two-dimensional numerical model of the Rayleigh–Taylor instability in the Earth’s equatorial ionosphere. This model was constructed under the condition that the Rayleigh-Taylor and gradient inhomogeneities are strongly elongated along the magnetic field lines. The growth rates of the gradient-drift plasma instability are obtained from the dispersion equation. The results of numerical experiments confirm the possibility of generating the GDI of the ionospheric plasma. This is due to significant longitudinal and altitudinal plasma gradients at the fronts of the developed EPB. In this case, the growth rate of the GDI can reach values of 1/(170 s). The GDI can cause equatorial F-scattering.



中文翻译:

赤道等离子体气泡前沿梯度漂移不稳定性增长率的数值研究

摘要

对赤道电离层气泡空间结构的地面和卫星测量以及数值模拟进行了相当密集的工作。这些数据表明,气泡垂直边界处电子浓度对数的纵向和高度梯度可以分别达到0.001 1/m和0.0001 1/m的值。由于电子浓度的这种梯度,梯度漂移不稳定性(GDI)的发展是可能的。这种不稳定性会产生具有赤道 F 散射特征的时空尺度的电离层等离子体不规则性。本文介绍了计算电离层气泡边界处 GDI 增长率的结果。赤道等离子体气泡 (EPB) 的时空结构是通过数值模拟获得的。该模拟基于地球赤道电离层瑞利-泰勒不稳定性的二维数值模型。该模型是在瑞利-泰勒和梯度不均匀性沿磁场线强烈拉长的条件下构建的。梯度漂移等离子体不稳定性的增长率由色散方程获得。数值实验的结果证实了产生电离层等离子体 GDI 的可能性。这是由于显着的纵向和高度等离子体梯度在发达 EPB 的前沿。在这种情况下,GDI 的增长率可以达到 1/(170 s) 的值。GDI 会导致赤道 F 散射。该模型是在瑞利-泰勒和梯度不均匀性沿磁场线强烈拉长的条件下构建的。梯度漂移等离子体不稳定性的增长率由色散方程获得。数值实验的结果证实了产生电离层等离子体 GDI 的可能性。这是由于显着的纵向和高度等离子体梯度在发达 EPB 的前沿。在这种情况下,GDI 的增长率可以达到 1/(170 s) 的值。GDI 会导致赤道 F 散射。该模型是在瑞利-泰勒和梯度不均匀性沿磁场线强烈拉长的条件下构建的。梯度漂移等离子体不稳定性的增长率由色散方程获得。数值实验的结果证实了产生电离层等离子体 GDI 的可能性。这是由于显着的纵向和高度等离子体梯度在发达 EPB 的前沿。在这种情况下,GDI 的增长率可以达到 1/(170 s) 的值。GDI 会导致赤道 F 散射。数值实验的结果证实了产生电离层等离子体 GDI 的可能性。这是由于显着的纵向和高度等离子体梯度在发达 EPB 的前沿。在这种情况下,GDI 的增长率可以达到 1/(170 s) 的值。GDI 会导致赤道 F 散射。数值实验的结果证实了产生电离层等离子体 GDI 的可能性。这是由于显着的纵向和高度等离子体梯度在发达 EPB 的前沿。在这种情况下,GDI 的增长率可以达到 1/(170 s) 的值。GDI 会导致赤道 F 散射。

更新日期:2021-07-14
down
wechat
bug