当前位置: X-MOL 学术Biophys. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methemoglobin formation in mutant hemoglobin α chains: electron transfer parameters and rates
Biophysical Journal ( IF 3.4 ) Pub Date : 2021-07-13 , DOI: 10.1016/j.bpj.2021.07.007
Vaibhav A Dixit 1 , Jochen Blumberger 2 , Shivam Kumar Vyas 1
Affiliation  

Hemoglobin-mediated transport of dioxygen (O2) critically depends on the stability of the reduced (Fe2+) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe3+) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe3+) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λsolv 73–96%) makes major contributions to reorganization free energy, whereas protein reorganization (λprot) accounts for 27–30% except for the Miyagi and J-Buda variants (λprot ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe2+ state. Semiclassical Marcus ET theory-based calculations predict experimental kET for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.



中文翻译:

突变血红蛋白α链中高铁血红蛋白的形成:电子转移参数和速率

血红蛋白介导的分子氧 (O 2 ) 转运主要取决于血红素辅助因子的还原 (Fe 2+ ) 形式的稳定性。一些蛋白质突变稳定了氧化(Fe 3+)状态(高铁血红蛋白,Hb M),导致高铁血红蛋白血症,可致死率超过 30%。大多数对影响 Hb 氧化的因素的分析都是回顾性的,并且仅对血红素的内球突变(His58、His87)提供见解。在这里,我们报告了关于氧化还原状态的第一个全原子分子动力学模拟以及 Hb M 的α链 Hb 氧化和还原率的 Marcus 电子转移 (ET) 参数的计算。Hb 野生型 (WT) 和大多数研究的α除 Hb M Iwate (H87Y) 外,链变体保持珠蛋白结构。形成 Hb M 的突变体往往具有较低的氧化还原电位,因此稳定了氧化 (Fe 3+ ) 状态(特别是具有 K61E 突变的 Hb Miyagi 变体)。溶剂重组(λ solv 73-96%)对重组自由能做出了重大贡献,而蛋白质重组(λ prot)占 27-30%,除了 Miyagi 和 J-Buda 变体(λ prot ∼4%)。分析变体之间的血红素-溶剂氢键相互作用提供了对 Lys61 残基在稳定 Fe 2+状态中的作用的见解。基于半经典 Marcus ET 理论的计算预测实验kET用于 Cyt b5-Hb 复合物,并提供有关 Hb 变体中 Hb M 的相对降低率的见解。因此,我们的方法为突变对结构、稳定性和 Hb 氧化还原率的影响提供了基本原理,并有可能识别导致高铁血红蛋白血症的突变。

更新日期:2021-09-07
down
wechat
bug