当前位置: X-MOL 学术J. Loss Prev. Process. Ind. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physical and mathematical modeling of interaction of detonation waves with inert gas plugs
Journal of Loss Prevention in the Process Industries ( IF 3.5 ) Pub Date : 2021-07-13 , DOI: 10.1016/j.jlp.2021.104595
Dmitry Tropin 1 , Igor Bedarev 1
Affiliation  

In the paper the physical and mathematical model for the description of the processes of transition, attenuation and suppression of detonation in hydrogen-air mixture in one- and two-dimensional formulation, taking into account reduced and detailed kinetics of chemical transformations in reactive gases, by inert gas plugs was proposed. On the basis of this model calculations of the interaction of plane (in one-dimensional formulation) and cellular (in two-dimensional formulation) detonation wave propagating in hydrogen-air mixture with layer of inert gases (argon, nitrogen, carbon dioxide) were performed. It was shown that depending on the type of isolating gas and the length of the plug various flow regimes were realized after the shock wave exits from the inert gas plug: a) reinitiation of detonation wave; b) suppression of the detonation wave with the formation of a deflagration wave at the end of the inert gas plug; c) suppression of the detonation wave with the combustion zone isolation by inert gas plug. The geometric limits of detonation (minimum inert gas plug length leads to detonation suppression with combustion zone isolation) for all three types of inert gas plugs were calculated. Comparison of the effectiveness of detonation suppression by various inert gas plugs shows that the carbon dioxide is more efficient for suppressing the detonation wave, i.e. geometric limits of detonation during interaction of detonation with carbon dioxide plug is smallest compared with other two types of plugs.



中文翻译:

爆震波与惰性气体塞相互作用的物理和数学模型

在该论文中,描述了一维和二维形式的氢-空气混合物中爆炸的转变、衰减和抑制过程的物理和数学模型,同时考虑了反应气体中化学转化的简化和详细动力学,建议使用惰性气体塞。在此模型的基础上,平面(一维公式)和细胞(二维公式)爆震波在具有惰性气体(氩、氮、二氧化碳)层的氢气-空气混合物中传播的计算是执行。结果表明,根据隔离气体的类型和塞子的长度,在冲击波从惰性气体塞子离开后会实现不同的流态: a) 爆震波的重新引发;b) 在惰性气体塞的末端形成爆燃波来抑制爆震波;c) 用惰性气体塞隔离燃烧区来抑制爆震波。计算了所有三种惰性气体塞的爆炸几何极限(最小惰性气体塞长度导致爆炸抑制与燃烧区隔离)。比较各种惰性气体塞对爆震的抑制效果,二氧化碳对爆震波的抑制效果更好,即与其他两种塞相比,二氧化碳塞与爆震相互作用时的爆震几何极限最小。c) 用惰性气体塞隔离燃烧区来抑制爆震波。计算了所有三种惰性气体塞的爆炸几何极限(最小惰性气体塞长度导致爆炸抑制与燃烧区隔离)。比较各种惰性气体塞对爆震的抑制效果,二氧化碳对爆震波的抑制效果更好,即与其他两种塞相比,二氧化碳塞与爆震相互作用时的爆震几何极限最小。c) 用惰性气体塞隔离燃烧区来抑制爆震波。计算了所有三种惰性气体塞的爆炸几何极限(最小惰性气体塞长度导致爆炸抑制与燃烧区隔离)。比较各种惰性气体塞对爆震的抑制效果,二氧化碳对爆震波的抑制效果更好,即与其他两种塞相比,二氧化碳塞与爆震相互作用时的爆震几何极限最小。

更新日期:2021-07-15
down
wechat
bug