当前位置: X-MOL 学术Int. J. Solids Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure-sensitive large-deformation model for thermomechanical processing simulations
International Journal of Solids and Structures ( IF 3.6 ) Pub Date : 2021-07-12 , DOI: 10.1016/j.ijsolstr.2021.111161
L. Borkowski 1 , M. Anahid 1 , A. Staroselsky 1 , W. Hu 2
Affiliation  

Current computational mechanics methods lack coupling between remeshing and microstructure-sensitive models. However, this combination is necessary to consider microstructural evolution during large-deformation, thermomechanical forming operations. A model focused on improving microstructure prediction under forming operations through the advancement of remeshing capabilities integrated with crystal plasticity finite element (CPFE) is developed. To enable coupling between remeshing and a large deformation crystal plasticity model, the current 3D adaptivity (i.e., remeshing) capabilities in LS-DYNA were enhanced to be compatible with a CPFE model. These enhancements include developing remapping techniques that properly account for crystallographic texture evolution during deformation. The techniques used for mapping of microstructure-related variables differ from the smooth interpolation schemes typically used for mapping of other field variables such as stress or displacement. It is demonstrated that combining the nonlinear large deformation capabilities of LS-DYNA, microstructure-sensitive remapping, and a CPFE model yields a simulation framework capable of accurately predicting evolution of location-specific forged part microstructures and shear band formation. Greater microstructural accuracy in large-deformation models can lead to improved strength, life, and manufacturing yield of lightweight forged parts.



中文翻译:

用于热机械加工模拟的微观结构敏感大变形模型

当前的计算力学方法缺乏重新网格划分和微观结构敏感模型之间的耦合。然而,这种组合对于考虑大变形热机械成形操作期间的微观结构演变是必要的。开发了一种模型,该模型专注于通过改进与晶体塑性有限元 (CPFE) 集成的重新网格划分能力来改进成形操作下的微观结构预测。为了实现重新网格化和大变形晶体塑性模型之间的耦合,LS-DYNA 中当前的 3D 自适应(即重新网格化)功能得到增强,以与 CPFE 模型兼容。这些增强功能包括开发重新映射技术,以正确解释变形过程中的晶体纹理演变。用于映射微观结构相关变量的技术不同于通常用于映射其他场变量(例如应力或位移)的平滑插值方案。结果表明,将 LS-DYNA 的非线性大变形能力、微观结构敏感重映射和 CPFE 模型相结合,可以产生一个能够准确预测特定位置锻造零件微观结构演变和剪切带形成的模拟框架。大变形模型中更高的微观结构精度可以提高轻量级锻造零件的强度、寿命和制造产量。结果表明,将 LS-DYNA 的非线性大变形能力、微观结构敏感重映射和 CPFE 模型相结合,可以产生一个能够准确预测特定位置锻造零件微观结构演变和剪切带形成的模拟框架。大变形模型中更高的微观结构精度可以提高轻型锻造零件的强度、寿命和制造产量。结果表明,将 LS-DYNA 的非线性大变形能力、微观结构敏感重映射和 CPFE 模型相结合,可以产生一个能够准确预测特定位置锻造零件微观结构演变和剪切带形成的模拟框架。大变形模型中更高的微观结构精度可以提高轻型锻造零件的强度、寿命和制造产量。

更新日期:2021-07-29
down
wechat
bug