当前位置: X-MOL 学术J. Nanopart. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Contribution in PCE enhancement: numerical designing and optimization of SnS thin film solar cell
Journal of Nanoparticle Research ( IF 2.5 ) Pub Date : 2021-07-12 , DOI: 10.1007/s11051-021-05259-5
Vishnu V. Kutwade 1 , Makrand E. Sonawane 1 , Ramphal Sharma 1, 2 , Ketan P. Gattu 2 , Dipak A. Tonpe 2 , Manoj K. Mishra 3
Affiliation  

This study aims to improve the experimentally low performance of p-SnS/n-ZnMgO thin film solar cells (TFSCs). We report a modification in the p-SnS/n-ZnMgO cell structure to address the issues with the help of detailed numerical modeling and analysis via solar cell capacitance simulator software (SCAPS). Here, CdS is used as a thin buffer layer about a few nanometers in between the p-SnS absorber layer and n-ZnMgO window layer. However, in terms of band alignment, SnS/CdS interface attributed the minimum band-offset, resulting in the enhancement of open-circuit voltage (Voc) and overall performance. Furthermore, to evaluate the final cell structure, the solar cell simulation has been investigated by varying several parameters such as thickness and defect density of absorber layer; interface defect density and the operating temperature affect the electrical parameters of TFSCs. Initially, the band-alignment engineering has been investigated for variable doping concentration (x) of magnesium (Mg) in the Zn1-xMgxO window layer. However, Mg concentration (x) = 0.18 shows the better results (Voc = ~ 0.7 V, short-circuit current density (Jsc) = 38.54 mA/cm2, Fill Factor = 83%, and efficiency (ɳ) = ~ 23%) with minimum band-offset at the CdS/ZnMgO interface, and the hexagonal nanorod-like morphology of ZnMgO helps to improve open-circuit voltage. Finally, with the optimized parameters (tSnS = 2 μm, tCdS = 50 nm, and tZnMgO = 70 nm) with maximum SnS/CdS interface defect density (Nt = 1 × 1011 cm−2), the simulated optimal p-SnS/CdS/n-ZnMgO cell structure exhibited the highest efficiency ~ 20% comparably higher than the reported p-SnS/n-ZnMgO experimental value of 2.1%.



中文翻译:

PCE增强的贡献:SnS薄膜太阳能电池的数值设计和优化

本研究旨在改善 p-SnS/n-ZnMgO 薄膜太阳能电池 (TFSC) 的实验性低性能。我们报告了 p-SnS/n-ZnMgO 电池结构的修改,以通过太阳能电池电容模拟器软件 (SCAPS) 进行详细的数值建模和分析来解决问题。此处,CdS 用作 p-SnS 吸收层和 n-ZnMgO 窗口层之间约几纳米的薄缓冲层。然而,在能带排列方面,SnS/CdS 界面归因于最小能带偏移,导致开路电压(V oc) 和整体性能。此外,为了评估最终的电池结构,通过改变吸收层的厚度和缺陷密度等几个参数来研究太阳能电池模拟;界面缺陷密度和工作温度影响 TFSCs 的电参数。最初,已针对 Zn 1-x Mg x O 窗口层中镁 (Mg) 的可变掺杂浓度 (x) 研究了能带对准工程。然而,Mg 浓度 (x) = 0.18 显示出更好的结果(Voc = ~ 0.7 V,短路电流密度 (Jsc) = 38.54 mA/cm 2,填充因子 = 83%,效率 (ɳ) = ~ 23%),CdS/ZnMgO 界面处的带偏移最小,ZnMgO 的六边形纳米棒状形态有助于提高开路电压。最后,在优化参数(t SnS  = 2 μm,t CdS  = 50 nm,t ZnMgO  = 70 nm)和最大 SnS/CdS 界面缺陷密度(N t  = 1 × 10 11  cm -2)下,模拟最优p-SnS/CdS/n-ZnMgO 电池结构表现出最高的效率 ~ 20%,比报道的 p-SnS/n-ZnMgO 实验值 2.1% 高出 20%。

更新日期:2021-07-12
down
wechat
bug