当前位置: X-MOL 学术Comput. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Droplet spreading dynamics on hydrophobic textured surfaces: A lattice Boltzmann study
Computers & Fluids ( IF 2.8 ) Pub Date : 2021-07-10 , DOI: 10.1016/j.compfluid.2021.105063
Eslam Ezzatneshan 1 , Aliasghar Khosroabadi 1
Affiliation  

A three-dimensional (3D) lattice Boltzmann method based on the Allen-Cahn equation (A-C LBM) is employed to study the spreading dynamics of impacting droplets on the hydrophobic flat and textured surfaces. At first, the simulation of the equilibrium state of a droplet and also the impacting droplet spreading on a flat surface are considered at various wetting conditions to examine the accuracy and efficiency of the present numerical technique. The obtained results for these cases show excellent agreement with available theoretical, numerical, and experimental data in the literature that confirms the validity of the A-C LBM employed for simulation of such complex interfacial dynamics. Upon validation, the implemented A-C LBM is applied for investigation of the droplet impingement on the hydrophobic textured surface and the results are compared with those obtained by considering the flat surface. The present study shows that using microscale textures on a hydrophobic surface dramatically reduces the contact area between the impacting droplet and the solid wall due to the momentum redirection phenomenon. Indeed, the hydrophobic surface used with in-plane circular ridges causes the spreading lamella to eject out-of-plane with a liquid bowl shape. This mechanism converts a part of the horizontal momentum of the spreading to the vertical momentum that prevents droplets to have intense interaction. For an impacting droplet at a high Weber number, it is concluded that the geometrical parameters of the ridge dictate the morphology of the spreading on the hydrophobic surface. However, the droplet dynamics at a low Weber number depend on both the texture size and the surface wettability, so that the physical mechanisms of the droplet spreading and lamella ejection dramatically change by variation of these parameters. The obtained results show that when the adhesion force of the substrate is dominant (lower contact angles), the wetting property of the surface plays an effective role than the texture geometry in the formation of the liquid bowl at low Weber numbers. Also, the present study demonstrates the capability of the A-C LBM for the prediction of the studied multiphase flow structures and characteristics with extremely complex interface phenomena.



中文翻译:

疏水纹理表面上的液滴扩散动力学:格子玻尔兹曼研究

采用基于 Allen-Cahn 方程 (AC LBM) 的三维 (3D) 晶格玻尔兹曼方法来研究撞击液滴在疏水平坦和纹理表面上的扩散动力学。首先,在各种润湿条件下考虑液滴平衡状态的模拟以及影响液滴在平坦表面上的扩散,以检查当前数值技术的准确性和效率。这些情况下获得的结果与文献中可用的理论、数值和实验数据非常吻合,这些数据证实了用于模拟这种复杂界面动力学的 AC LBM 的有效性。经验证,实施的 AC LBM 用于研究液滴撞击疏水纹理表面,并将结果与​​通过考虑平坦表面获得的结果进行比较。本研究表明,由于动量重定向现象,在疏水表面上使用微尺度纹理显着减少了撞击液滴与固体壁之间的接触面积。事实上,与平面内圆形脊一起使用的疏水表面导致展开的薄片以液体碗形状喷射到平面外。这种机制将扩散的一部分水平动量转换为垂直动量,防止液滴发生强烈相互作用。对于高韦伯数的撞击液滴,得出的结论是,脊的几何参数决定了疏水表面上铺展的形态。然而,低韦伯数下的液滴动力学取决于纹理尺寸和表面润湿性,因此液滴扩散和薄片喷射的物理机制因这些参数的变化而发生显着变化。所得结果表明,当基材的粘附力占主导地位(较低的接触角)时,在低韦伯数下,表面的润湿性比纹理几何形状在液体碗的形成中起着有效的作用。此外,本研究证明了 AC LBM 具有预测所研究的多相流结构和特征的能力,具有极其复杂的界面现象。低韦伯数下的液滴动力学取决于纹理尺寸和表面润湿性,因此液滴扩散和薄片喷射的物理机制因这些参数的变化而发生显着变化。所得结果表明,当基材的粘附力占主导地位(较低的接触角)时,在低韦伯数下,表面的润湿性比纹理几何形状在液体碗的形成中起着有效的作用。此外,本研究证明了 AC LBM 具有预测所研究的多相流结构和特征的能力,具有极其复杂的界面现象。低韦伯数下的液滴动力学取决于纹理尺寸和表面润湿性,因此液滴扩散和薄片喷射的物理机制因这些参数的变化而发生显着变化。获得的结果表明,当基材的粘附力占主导地位(较低的接触角)时,在低韦伯数下,表面的润湿性比纹理几何形状在液体碗的形成中起着有效的作用。此外,本研究证明了 AC LBM 具有预测所研究的多相流结构和特征的能力,具有极其复杂的界面现象。因此,液滴扩散和薄片喷射的物理机制会因这些参数的变化而发生显着变化。获得的结果表明,当基材的粘附力占主导地位(较低的接触角)时,在低韦伯数下,表面的润湿性比纹理几何形状在液体碗的形成中起着有效的作用。此外,本研究证明了 AC LBM 具有预测所研究的多相流结构和特征的能力,具有极其复杂的界面现象。因此,液滴扩散和薄片喷射的物理机制会因这些参数的变化而发生显着变化。获得的结果表明,当基材的粘附力占主导地位(较低的接触角)时,在低韦伯数下,表面的润湿性比纹理几何形状在液体碗的形成中起着有效的作用。此外,本研究证明了 AC LBM 具有预测所研究的多相流结构和特征的能力,具有极其复杂的界面现象。在低韦伯数下液体碗的形成中,表面的润湿性比纹理几何形状更有效。此外,本研究证明了 AC LBM 具有预测所研究的多相流结构和特征的能力,具有极其复杂的界面现象。在低韦伯数下,表面的润湿性比纹理几何形状在液体碗的形成中起着有效的作用。此外,本研究证明了 AC LBM 具有预测所研究的多相流结构和特征的能力,具有极其复杂的界面现象。

更新日期:2021-07-10
down
wechat
bug