当前位置: X-MOL 学术CCS Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomically Dispersed Manganese Lewis Acid Sites Catalyze Electrohydrogenation of Nitrogen to Ammonia
CCS Chemistry ( IF 11.2 ) Pub Date : 2021-07-08 , DOI: 10.31635/ccschem.021.202101106
Zhoutai Shang 1, 2 , Bin Song 3 , Hongbao Li 1 , Hong Zhang 4 , Fan Feng 4 , Jacob Kaelin 5 , Wenli Zhang 6 , Beibei Xie 7 , Yingwen Cheng 5 , Ke Lu 1, 2 , Qianwang Chen 1, 2, 8
Affiliation  

Ambient electrochemical nitrogen fixation is a promising and environmentally benign route for producing sustainable ammonia, but has been limited by the poor performance of existing catalysts that promote the balanced chemisorption of N2 and subsequent electrochemical activation and hydrogenation. Herein, we describe the highly selective and efficient electrohydrogenation of nitrogen to ammonia using a hollow nanorod-based hierarchically graphitic carbon electrocatalyst with abundant atomically dispersed Mn sites. We discovered that the electron interactions strengthen the interfacial binding between nitrogen and active Mn Lewis acidic hotspots. The Lewis acid–base interactions promote the chemisorption and lock up nitrogen on the active sites and suppress proton adsorption. The proton-coupled electron transfer cleavage of the nitrogen triple bond through an associative mechanism was confirmed under lower overpotential, which delivered high ammonia yield of 67.5 μg h−1 mgcat.−1 and Faradaic efficiency of 13.7% at −0.25 V versus the reversible hydrogen electrode, along with ∼100% selectivity and significantly enhanced electrochemical stability (about 88.8% current retention over 50 h potentiostatic test) under mild conditions. Our strategy is versatile to tailor the nitrogen fixation performance of single-atom catalysts with atomic accuracy.



中文翻译:

原子分散的锰路易斯酸位点催化氮电加氢生成氨

环境电化学固氮是一种有前景且环境友好的生产可持续氨的途径,但受到现有催化剂性能不佳的限制,这些催化剂可促进 N 2的平衡化学吸附以及随后的电化学活化和氢化。在此,我们描述了使用具有大量原子分散 Mn 位点的基于中空纳米棒的分级石墨碳电催化剂将氮高度选择性和高效地电氢化为氨。我们发现电子相互作用加强了氮和活性 Mn Lewis 酸性热点之间的界面结合。路易斯酸碱相互作用促进化学吸附并将氮锁定在活性位点上并抑制质子吸附。在较低的过电位下,通过缔合机制证实了氮三键的质子耦合电子转移裂解,这提供了 67.5 μg h -1 mg cat 的高氨产率−1和可逆氢电极在 -0.25 V 时的法拉第效率为 13.7%,同时在温和条件下具有约 100% 的选择性和显着增强的电化学稳定性(50 小时恒电位测试中约 88.8% 的电流保持率)。我们的策略是通用的,可以以原子精度定制单原子催化剂的固氮性能。

更新日期:2021-07-09
down
wechat
bug