当前位置: X-MOL 学术J. Compos. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of cathode doping on 3D printed continuous carbon fiber structural battery composites by UV-assisted coextrusion deposition
Journal of Composite Materials ( IF 2.9 ) Pub Date : 2021-07-08 , DOI: 10.1177/00219983211031632
John M Pappas 1 , Aditya R Thakur 1 , Xiangyang Dong 1
Affiliation  

Structural battery composites are capable of significant system level mass and volume reductions not possible with separate battery and structural components by simultaneously carrying mechanical loads and storing electrical energy. The ability to 3D print lithium-ion structural batteries in arbitrary geometries would not only allow a flexible battery design but also facilitate its implementation as a structural component. This study presents a new 3D carbon fiber structural battery composite 3D printed by an ultraviolet (UV)-assisted coextrusion deposition method. With individual carbon fibers coated by solid polymer electrolyte (SPE) and dispersed within cathode doped matrix, energy storage is achieved in micro-battery cells at the fiber level within the 3D printed structural battery composite. The 3D printed structural battery composites with various complex geometries are demonstrated by successfully powering up LEDs. The SPE coating and cathode doping effect on microstructure, printability, mechanical and electrochemical properties are further characterized and investigated. A trade-off between printability and electrochemical performance is observed due to hindered curing by the doped cathode materials. The obtained electrochemical and mechanical performance is comparable to the carbon fiber based structural battery composites fabricated by conventional lay-up processes. These well demonstrate the great potentials of the proposed 3D printing method in rapidly fabricating functional structural battery composite components with complex geometries.



中文翻译:

阴极掺杂对紫外辅助共挤出沉积 3D 打印连续碳纤维结构电池复合材料的影响

通过同时承载机械载荷和存储电能,结构电池复合材料能够显着减少系统级质量和体积,这是单独的电池和结构组件无法实现的。以任意几何形状 3D 打印锂离子结构电池的能力不仅可以实现灵活的电池设计,还有助于将其作为结构组件实施。本研究展示了一种通过紫外线 (UV) 辅助共挤出沉积方法 3D 打印的新型 3D 碳纤维结构电池复合材料。单个碳纤维由固体聚合物电解质 (SPE) 涂覆并分散在阴极掺杂基质中,在 3D 打印结构电池复合材料内的纤维级微电池中实现了能量存储。通过成功为 LED 供电,展示了具有各种复杂几何形状的 3D 打印结构电池复合材料。进一步表征和研究了 SPE 涂层和阴极掺杂对微观结构、可印刷性、机械和电化学性能的影响。由于掺杂阴极材料阻碍固化,观察到可印刷性和电化学性能之间的权衡。获得的电化学和机械性能与通过传统叠层工艺制造的碳纤维基结构电池复合材料相当。这些很好地证明了所提出的 3D 打印方法在快速制造具有复杂几何形状的功能性结构电池复合组件方面的巨大潜力。进一步表征和研究了 SPE 涂层和阴极掺杂对微观结构、可印刷性、机械和电化学性能的影响。由于掺杂阴极材料阻碍固化,观察到可印刷性和电化学性能之间的权衡。获得的电化学和机械性能与通过传统叠层工艺制造的碳纤维基结构电池复合材料相当。这些很好地证明了所提出的 3D 打印方法在快速制造具有复杂几何形状的功能性结构电池复合组件方面的巨大潜力。进一步表征和研究了 SPE 涂层和阴极掺杂对微观结构、可印刷性、机械和电化学性能的影响。由于掺杂阴极材料阻碍固化,观察到可印刷性和电化学性能之间的权衡。获得的电化学和机械性能与通过传统叠层工艺制造的碳纤维基结构电池复合材料相当。这些很好地证明了所提出的 3D 打印方法在快速制造具有复杂几何形状的功能性结构电池复合组件方面的巨大潜力。由于掺杂阴极材料阻碍固化,观察到可印刷性和电化学性能之间的权衡。获得的电化学和机械性能与通过传统叠层工艺制造的碳纤维基结构电池复合材料相当。这些很好地证明了所提出的 3D 打印方法在快速制造具有复杂几何形状的功能性结构电池复合组件方面的巨大潜力。由于掺杂阴极材料阻碍固化,观察到可印刷性和电化学性能之间的权衡。获得的电化学和机械性能与通过传统叠层工艺制造的碳纤维基结构电池复合材料相当。这些很好地证明了所提出的 3D 打印方法在快速制造具有复杂几何形状的功能性结构电池复合组件方面的巨大潜力。

更新日期:2021-07-09
down
wechat
bug