当前位置: X-MOL 学术Adv. Phys. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biofunctional conducting polymers: synthetic advances, challenges, and perspectives towards their use in implantable bioelectronic devices
Advances in Physics: X ( IF 6 ) Pub Date : 2021-07-09 , DOI: 10.1080/23746149.2021.1899850
Carly Baker 1 , Klaudia Wagner 1 , Pawel Wagner 1 , David L. Officer 1 , Damia Mawad 2
Affiliation  

ABSTRACT

Conducting polymers (CPs) are organic semiconductors that have gained popularity in more recent years as components of bioelectronic devices designed to electrically communicate with biological environments. Synergy between the material and biological tissue, both on a structural and functional level, is paramount for the proper performance of an implantable biomedical device. As such, significant progress has been made on understanding the fundamental impact of the molecular and macro structure of CPs on their functional properties such as conductivity and charge mobility. At the same time, the development of a variety of synthetic approaches has yielded a library of CPs with improved mechanical and electronic properties. Specifically, chemical biofunctionalization of CP films has significantly decreased the foreign body response, the main contributor to device failure. Therefore, this review covers the advances and challenges made in the chemical biofunctionalization of CP films for potential implantable devices. This is achieved by covalently attaching the biocompatible or biofunctional group to the CP backbone via a reactive functional group to create a material with physical and electronic properties that better matches biological tissue. A perspective is presented that this synthetic chemistry approach to biofunctionalization is valuable for the integration of CPs into commercial implantable bioelectronic devices.



中文翻译:

生物功能导电聚合物:在可植入生物电子设备中使用的合成进展、挑战和前景

摘要

导电聚合物 (CP) 是近年来流行的有机半导体,作为设计用于与生物环境进行电气通信的生物电子设备的组件。材料和生物组织之间在结构和功能层面上的协同作用对于可植入生物医学设备的正确性能至关重要。因此,在理解 CP 的分子和宏观结构对其功能特性(如电导率和电荷迁移率)的基本影响方面取得了重大进展。与此同时,各种合成方法的发展产生了一个具有改进机械和电子特性的 CPs 库。具体而言,CP 膜的化学生物功能化显着降低了异物反应,设备故障的主要原因。因此,本综述涵盖了用于潜在植入装置的 CP 膜的化学生物功能化方面的进展和挑战。这是通过通过反应性官能团将生物相容性或生物功能性基团共价连接到 CP 骨架来实现的,以创建具有更好地匹配生物组织的物理和电子特性的材料。提出了一种观点,即这种生物功能化的合成化学方法对于将 CP 集成到商业可植入生物电子设备中是有价值的。这是通过通过反应性官能团将生物相容性或生物功能性基团共价连接到 CP 骨架来实现的,以创建具有更好地匹配生物组织的物理和电子特性的材料。提出了一种观点,即这种生物功能化的合成化学方法对于将 CP 集成到商业可植入生物电子设备中是有价值的。这是通过通过反应性官能团将生物相容性或生物功能性基团共价连接到 CP 骨架来实现的,以创建具有更好地匹配生物组织的物理和电子特性的材料。提出了一种观点,即这种生物功能化的合成化学方法对于将 CP 集成到商业可植入生物电子设备中是有价值的。

更新日期:2021-07-09
down
wechat
bug