当前位置: X-MOL 学术Transp. Geotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical response of full-scale geosynthetic-reinforced asphalt overlays subjected to repeated loads
Transportation Geotechnics ( IF 5.3 ) Pub Date : 2021-07-09 , DOI: 10.1016/j.trgeo.2021.100617
V. Vinay Kumar 1 , Sireesh Saride 2 , Jorge G. Zornberg 1
Affiliation  

This study aims at evaluating the influence of geosynthetic reinforcements on the structural improvement of asphalt overlays placed on distressed pavement layers using repeated load tests. Full-scale instrumented pavement models were constructed in an indoor steel tank measuring 1000 mm in length, 1000 mm in width and 1000 mm in depth. Full-scale instrumented pavement models consisted of a 650-mm-thick weak subgrade, 250-mm-thick base, 90-mm-thick distressed asphalt layer, binder tack coat, geosynthetic reinforcement (except in control sections), and 50-mm-thick hot mix asphalt overlay. Sensors used in the instrumentation program included earth pressure cells and linear variable displacement transformers installed on the subgrade and surface layers, respectively. Four different geosynthetic types, including woven geo-jute mat (GJ), polypropylene geogrid (PP), polyester geogrid (PET), and fiberglass geogrid composite (FGC) were adopted as asphalt reinforcements. A servo-hydraulic actuator was used to replicate a live traffic wheel load by applying an equivalent single axle contact pressure of 550 kPa at a frequency of 1 Hz. Repeated load tests were terminated after 100,000 load cycles and the behaviour of geosynthetic-reinforced full-scale models was compared with that of unreinforced model. Performance indicators, including Traffic Benefit Ratio (TBR) and Rut Depth Reductions (RDR), were estimated and repeated load test results indicated an increase in the structural performance of geosynthetic-reinforced full-scale models in relation to that of unreinforced model. Among the geosynthetic-reinforced models considered in this study, the FGC-reinforced model showed a comparatively better performance with a maximum TBR of 20 at a permanent deflection of 5 mm and the highest RDR of 56% after 100,000 load cycles, respectively. Maximum reductions of 56% in surface deflection and of 30% in vertical pressure on the subgrade were also observed after 100,000 load cycles in the FGC-reinforced model.



中文翻译:

重复荷载作用下全尺寸土工合成材料加筋沥青覆盖层的力学响应

本研究旨在通过重复载荷试验评估土工合成材料增强材料对放置在破损路面层上的沥青覆盖层的结构改进的影响。全尺寸仪表路面模型是在一个长 1000 毫米、宽 1000 毫米和深 1000 毫米的室内钢罐中建造的。全尺寸仪表路面模型包括 650 毫米厚的弱路基、250 毫米厚的基层、90 毫米厚的劣化沥青层、粘合剂粘性涂层、土工合成材料加固(控制部分除外)和 50 毫米-厚热混合沥青覆盖层。仪表程序中使用的传感器包括分别安装在路基和表层上的土压力传感器和线性可变位移变压器。四种不同的土工合成材料类型,包括编织土工黄麻垫 (GJ),采用聚丙烯土工格栅(PP)、聚酯土工格栅(PET)和玻璃纤维土工格栅复合材料(FGC)作为沥青增强材料。通过以 1 Hz 的频率施加 550 kPa 的等效单轴接触压力,使用伺服液压执行器来复制实时交通车轮载荷。重复荷载试验在 100,000 次荷载循环后终止,并将土工合成材料加固的全尺寸模型的行为与未加固模型的行为进行比较。性能指标,包括交通效益比 (TBR) 和车辙深度减少 (RDR),经过估算,重复载荷测试结果表明,土工合成材料加固的全尺寸模型的结构性能与未加固模型相比有所提高。在本研究中考虑的土工合成材料加固模型中,FGC 增强模型表现出相对更好的性能,在 5 毫米的永久挠度下的最大 TBR 为 20,在 100,000 次负载循环后的最高 RDR 分别为 56%。在 FGC 加固模型中,在 100,000 次负载循环后,还观察到表面挠度最大减少 56%,路基上的垂直压力最大减少 30%。

更新日期:2021-07-14
down
wechat
bug