当前位置: X-MOL 学术Environ. Earth Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water–Energy–Food (WEF) framework towards China’s carbon neutrality by 2060
Environmental Earth Sciences ( IF 2.8 ) Pub Date : 2021-07-08 , DOI: 10.1007/s12665-021-09762-9
Yachen Xie 1, 2 , Jiaguo Qi 1, 2 , Zhengmeng Hou 3, 4 , Hejuan Liu 5 , Cheng Cao 6
Affiliation  

The global warming induced by the emission of greenhouse gases, especially the carbon dioxide, has become the global climate and environmental issues. China has been working in the CO2 emission reduction and carbon sinks with the purpose of becoming the carbon-neutral country by 2060. The CO2 capture, utilization and storage (CCUS) technologies and the reforestation technology represented by the Conversion of Cropland to Forestland Program (CCFP) have great potential for sinking CO2 emission. However, the trade-off among CCFP, CCS/CCUS and Water-Energy-Food (WEF) nexus are not well evaluated. In this paper, the remote-sensing data are collected and used to evaluate the sustainability of CCFP by analyzing the variation of land use and land cover (LULC), crop production, etc. The results show that 13.29% of the cropland in 2001 vanished and converted to grassland (8.3%), mosaic cropland (3%) and urban land (0.98%) in 2019, demonstrating that the CCFP is successful in both WEF nexus and carbon sink. The total crop production has increased around 50% between 2001 and 2019, implying that the CCFP will not lead to the food risk during the conversion of croplands into other types of land in China. A sustainable implementation of CCFP and other environmental Payments for Ecosystem Services (PES) policies in 2019–2060 could reach an estimated total growth of 7.462 billion m3 in comparison of that in 2018 and the total plantation forest stock of about 10.852 billion m3 in 2060, with a corresponding minimum CO2 sink of 2.90 billion tons in 2060. The estimated peak of net equivalent CO2 emissions before 2030 is about 11.0 billion tons and could not be reduced to zero by 2060 without the large-scale application of the CCS/CCUS technologies as geological sequestration of CO2. Besides, the application of CCS/CCUS can be beneficial for WEF, e.g., through replacing the water by CO2 during energy production, especially in the shale gas production in the regions with high water risks in China. In one word, CCS/CCUS and CCFP are two decided pathways of carbon sequestration and should be systematically applied to achieve China’s carbon neutrality by 2060.

更新日期:2021-07-08
down
wechat
bug