当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bimetallic nitrogen-doped porous carbon derived from ZIF-L&FeTPP@ZIF-8 as electrocatalysis and application for antibiotic wastewater treatment
Separation and Purification Technology ( IF 8.6 ) Pub Date : 2021-07-08 , DOI: 10.1016/j.seppur.2021.119259
Shengnan Li 1, 2 , Jiwei Jiang 1 , Shih-Hsin Ho 2 , Fengxiang Li 1 , Wenlu Zeng 1
Affiliation  

Microbial fuel cells (MFCs) systems are up-and-coming technologies for renewable energy production and wastewater treatment simultaneously. However, the inactive oxygen reduction reaction (ORR) on the cathode markedly limits the functioning of MFCs. Therefore, the cathodic catalyst is one of the crucial components in MFCs, this paper presents the removal of the antibiotic sulfamethoxazole (SMX) from water using single-chamber MFCs with Fe-Co-C/N as electrocatalysis. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were conducted to illustrate the structure and elemental composition of Fe-Co-C/N. The results obtained by the rotating disk electrode (RDE) method showed an extraordinary electrocatalytic activity of Fe-Co-C/N towards ORR in O2-saturated 0.1 M KOH. Furthermore, the degradation of SMX by MFCs that applied modified electrodes was also studied. The results demonstrated that using Fe-Co-C/N as air–cathode catalysts exhibited the degradation efficiency of 61.64% towards 6 mg/L SMX with 48 h. In addition, cyclic voltammetry (CV) analysis showed that the peak current of the biofilm in the PBS solution (without adding SMX) was significantly higher than that of the solution with SMX addition at 6, 18, and 30 mg/L. Moreover, MFC performance was also evaluated by measuring electrochemical impedance spectroscopy (EIS), power generation, and polarization curves. Last but not least, the high-throughput sequencing-based metagenomic technique was used to explore the microbial community diversity, functional genes in MFCs, and fate of ARGs. SMX addition raised the abundances of sul1 and sul2 as resistance genes, which enhanced microbial resistance, the coping capability of SMX toxicity, and the adjustment of the damage from SMX. The obtained results suggest that Fe-Co-C/N is a feasible catalyst for MFC cathodes owing to its satisfactory performance in terms of SMX wastewater treatment and power production.



中文翻译:

ZIF-L&FeTPP@ZIF-8衍生的双金属氮掺杂多孔碳电催化及其在抗生素废水处理中的应用

微生物燃料电池 (MFC) 系统是同时用于可再生能源生产和废水处理的新兴技术。然而,阴极上的非活性氧还原反应 (ORR) 显着限制了 MFC 的功能。因此,阴极催化剂是 MFC 的关键组分之一,本文介绍了使用 Fe-Co-C/N 作为电催化的单室 MFC 从水中去除抗生素磺胺甲恶唑 (SMX)。进行扫描电子显微镜 (SEM)、透射电子显微镜 (TEM) 和 X 射线光电子能谱 (XPS) 以说明 Fe-Co-C/N 的结构和元素组成。通过旋转圆盘电极 (RDE) 方法获得的结果表明 Fe-Co-C/N 对 O 2 中的ORR 具有非凡的电催化活性-饱和的 0.1 M KOH。此外,还研究了应用修饰电极的 MFC 对 SMX 的降解。结果表明,使用 Fe-Co-C/N 作为空气阴极催化剂,在 48 小时内对 6 mg/L SMX 的降解效率为 61.64%。此外,循环伏安法 (CV) 分析表明,PBS 溶液(未添加 SMX)中生物膜的峰值电流显着高于添加 6、18 和 30 mg/L 的 SMX 溶液。此外,还通过测量电化学阻抗谱 (EIS)、发电和极化曲线来评估 MFC 性能。最后但并非最不重要的是,基于高通量测序的宏基因组技术被用于探索微生物群落多样性、MFCs 中的功能基因和 ARGs 的命运。SMX 的添加提高了sul1sul2作为抗性基因,增强了微生物抗性、SMX 毒性的应对能力和 SMX 损伤的调节。所得结果表明 Fe-Co-C/N 是一种可行的 MFC 阴极催化剂,因为它在 SMX 废水处理和发电方面的性能令人满意。

更新日期:2021-07-20
down
wechat
bug