当前位置: X-MOL 学术Isa Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A machine learning-based workflow for automatic detection of anomalies in machine tools
ISA Transactions ( IF 7.3 ) Pub Date : 2021-07-08 , DOI: 10.1016/j.isatra.2021.07.010
Marwin Züfle 1 , Felix Moog 2 , Veronika Lesch 1 , Christian Krupitzer 3 , Samuel Kounev 1
Affiliation  

Despite the increased sensor-based data collection in Industry 4.0, the practical use of this data is still in its infancy. In contrast, academic literature provides several approaches to detect machine failures but, in most cases, relies on simulations and vast amounts of training data. Since it is often not practical to collect such amounts of data in an industrial context, we propose an approach to detect the current production mode and machine degradation states on a comparably small data set. Our approach integrates domain knowledge about manufacturing systems into a highly generalizable end-to-end workflow ranging from raw data processing, phase segmentation, data resampling, and feature extraction to machine tool anomaly detection. The workflow applies unsupervised clustering techniques to identify the current production mode and supervised classification models for detecting the present degradation. A resampling strategy and classical machine learning models enable the workflow to handle small data sets and distinguish between normal and abnormal machine tool behavior. To the best of our knowledge, there exists no such end-to-end workflow in the literature that uses the entire machine signal as input to identify anomalies for individual tools. Our evaluation with data from a real multi-purpose machine shows that the proposed workflow detects anomalies with an average F1-score of almost 93%.



中文翻译:

一种基于机器学习的工作流程,用于自动检测机床异常

尽管工业 4.0 中基于传感器的数据收集有所增加,但这些数据的实际使用仍处于起步阶段。相比之下,学术文献提供了几种检测机器故障的方法,但在大多数情况下,依赖于模拟和大量训练数据。由于在工业环境中收集如此大量的数据通常是不切实际的,因此我们提出了一种在相对较小的数据集上检测当前生产模式和机器退化状态的方法。我们的方法将有关制造系统的领域知识集成到一个高度通用的端到端工作流程中,范围从原始数据处理、相位分割、数据重采样和特征提取到机床异常检测。该工作流程应用无监督聚类技术来识别当前的生产模式和监督分类模型以检测当前的退化。重采样策略和经典机器学习模型使工作流能够处理小数据集并区分正常和异常的机床行为。据我们所知,文献中不存在这样的端到端工作流程,它使用整个机器信号作为输入来识别单个工具的异常情况。我们对来自真实多用途机器的数据进行的评估表明,所提出的工作流程检测到异常的平均 F1 分数接近 93%。重采样策略和经典机器学习模型使工作流能够处理小数据集并区分正常和异常的机床行为。据我们所知,文献中不存在这样的端到端工作流程,它使用整个机器信号作为输入来识别单个工具的异常情况。我们对来自真实多用途机器的数据进行的评估表明,所提出的工作流程检测到异常的平均 F1 分数接近 93%。重采样策略和经典机器学习模型使工作流能够处理小数据集并区分正常和异常的机床行为。据我们所知,文献中不存在这样的端到端工作流程,它使用整个机器信号作为输入来识别单个工具的异常情况。我们对来自真实多用途机器的数据进行的评估表明,所提出的工作流程检测到异常的平均 F1 分数接近 93%。

更新日期:2021-07-08
down
wechat
bug