当前位置: X-MOL 学术Isa Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Line-of-sight-based global finite-time stable path following control of unmanned surface vehicles with actuator saturation
ISA Transactions ( IF 7.3 ) Pub Date : 2021-07-08 , DOI: 10.1016/j.isatra.2021.07.009
Mingcong Li 1 , Chen Guo 1 , Haomiao Yu 1 , Yi Yuan 1
Affiliation  

This paper focuses on the path following problem of unmanned surface vehicles (USVs) with unknown velocities, model uncertainties, and actuator saturation. To steer a USV rapidly and accurately follow the desired parameterized path, a line-of-sight (LOS)-based finite-time path following scheme is constructed in which the finite-time technique can ensure the fast error convergence, such that some intelligent operations, including patrolling, fuel supplying, and formation control, can be promptly performed. First, USV kinematic and kinetic models are established, and finite-time observers are subsequently employed to identify the unmeasured USV velocities and model uncertainties. Then, an LOS guidance law is designed to achieve the finite-time convergence of the position errors. In addition, an optimized look-ahead distance is developed using a fuzzy algorithm. Meanwhile, the control subsystem is designed at the kinetic level by combining the backstepping sliding mode method and a novel auxiliary dynamic system, where the auxiliary system is applied to address actuator saturation. Subsequently, theoretical analysis is conducted to verify that the entire system is uniformly global finite-time stable (UGFTS). Finally, the simulation studies confirms the availability of the developed method.



中文翻译:

基于视线的全局有限时间稳定路径跟踪具有致动器饱和的无人水面车辆控制

本文重点研究具有未知速度、模型不确定性和执行器饱和的无人水面航行器 (USV) 的路径跟踪问题。为快速准确地引导无人艇跟随所需的参数化路径,构建了基于视距(LOS)的有限时间路径跟随方案,其中有限时间技术可以确保快速误差收敛,使得一些智能可以及时执行巡逻、燃料供应和编队控制等作业。首先,建立 USV 运动学和动力学模型,随后使用有限时间观测器来识别未测量的 USV 速度和模型不确定性。然后,设计了一种 LOS 制导律来实现位置误差的有限时间收敛。此外,使用模糊算法开发优化的前瞻距离。同时,结合反推滑模法和新型辅助动态系统,在动力学层面设计控制子系统,辅助系统用于解决执行器饱和问题。随后,进行理论分析以验证整个系统是一致的全局有限时间稳定(UGFTS)。最后,仿真研究证实了所开发方法的可用性。进行理论分析以验证整个系统是一致的全局有限时间稳定(UGFTS)。最后,仿真研究证实了所开发方法的可用性。进行理论分析以验证整个系统是一致的全局有限时间稳定(UGFTS)。最后,仿真研究证实了所开发方法的可用性。

更新日期:2021-07-08
down
wechat
bug