当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Overcoming thermo-optical dynamics in broadband nanophotonic sensing
Microsystems & Nanoengineering ( IF 7.9 ) Pub Date : 2021-07-07 , DOI: 10.1038/s41378-021-00281-y
Mingkang Wang 1, 2 , Diego J Perez-Morelo 1, 2 , Vladimir Aksyuk 1
Affiliation  

Advances in integrated photonics open up exciting opportunities for batch-fabricated optical sensors using high-quality-factor nanophotonic cavities to achieve ultrahigh sensitivities and bandwidths. The sensitivity improves with increasing optical power; however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic force microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, accurately measuring low- and intermediate-frequency components of a dynamic signal while reaching a sensitivity of 0.7 fm/Hz1/2 at high frequencies, an improvement of ≈10× relative to the best performance in the linear regime. Counterintuitively, we discover that a higher transduction gain and sensitivity are achieved with lower quality-factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing the small-signal dynamic responses of a broad range of technologically important photonic sensors subject to the thermo-optical effect.



中文翻译:

克服宽带纳米光子传感中的热光动力学

集成光子学的进步为使用高质量因子纳米光子腔实现超高灵敏度和带宽的批量制造光学传感器开辟了令人兴奋的机会。灵敏度随着光功率的增加而提高;然而,微米级模式体积内的局部吸收和加热显着扭曲了腔共振,并将传感器响应与热动力学强烈耦合,限制了灵敏度并阻碍了宽带时间相关信号的测量。在这里,我们推导出了一个频率相关的光子传感器传递函数,该函数解释了热光动力学,并定量描述了来自集成光子原子力显微镜纳米机械探针的测量宽带光机械信号。使用这个传递函数,在高频时为1/2,相对于线性区域中的最佳性能提高了约 10 倍。与直觉相反,我们发现对于低信号频率,使用较低品质因数的光学模式可以实现更高的转导增益和灵敏度。不限于光机械换能器,导出的传递函数通常适用于描述受热光效应影响的各种技术上重要的光子传感器的小信号动态响应。

更新日期:2021-07-07
down
wechat
bug