当前位置: X-MOL 学术J. Eur. Ceram. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ tensile damage and fracture behavior of PIP SiC/SiC minicomposites at room temperature
Journal of the European Ceramic Society ( IF 5.7 ) Pub Date : 2021-07-07 , DOI: 10.1016/j.jeurceramsoc.2021.06.050
Haitang Yang 1, 2, 3 , Shenwei Xu 1 , Daxu Zhang 4 , Longbiao Li 5 , Xiaozhong Huang 1, 2, 3
Affiliation  

In-situ tensile damage and fracture behavior of original SiC fiber bundles, processed and uncoated SiC fiber bundles, SiC fiber bundle with PyC interphase, SiC/SiC minicomposites without/with PyC interphase are analyzed. Relationships between load-displacement curves, stress-strain curves, and micro damage mechanisms are established. A micromechanical approach is developed to predict the stress-strain curves of SiC/SiC minicomposites for different damage stages. Experimental tensile stress-strain curves of two different SiC fiber reinforced SiC matrix without/with interphase are predicted. Evolution of composite’s tangent modulus, interface debonding fraction, and broken fiber fraction with increasing applied stress is analyzed. For the BX™ and Cansas-3303™ SiC/SiC minicomposite with interphase, the composite’s tangent modulus decreased with applied stress especially approaching tensile fracture; the interface debonding fraction increased with applied stress, and the composite’s tensile fracture occurred with partial interface debonding; and the broken fiber fraction increased with applied stress, and most of fiber’s failure occurred approaching final tensile fracture.



中文翻译:

PIP SiC/SiC微型复合材料在室温下的原位拉伸损伤和断裂行为

分析了原始 SiC 纤维束、加工和未涂层 SiC 纤维束、具有 PyC 界面的 SiC 纤维束、无/具有 PyC 界面的 SiC/SiC 微型复合材料的原位拉伸损伤和断裂行为。建立了载荷-位移曲线、应力-应变曲线和微观损伤机制之间的关系。开发了一种微机械方法来预测不同损伤阶段的 SiC/SiC 微型复合材料的应力 - 应变曲线。预测了两种不同的 SiC 纤维增强 SiC 基体的实验拉伸应力 - 应变曲线,没有/有界面。分析了复合材料的切线模量、界面脱粘率和断裂纤维率随外加应力的变化。对于具有界面的 BX™ 和 Cansas-3303™ SiC/SiC 微型复合材料,复合材料的切线模量随着外加应力的增加而降低,尤其是在接近拉伸断裂时;界面脱粘率随外加应力的增加而增加,复合材料发生拉伸断裂,界面部分脱粘;并且断裂的纤维分数随着施加的应力而增加,并且大部分纤维的失效发生在接近最终拉伸断裂时。

更新日期:2021-08-27
down
wechat
bug