当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of droplet on flowing liquid film: Experimental and numerical determinations
International Communications in Heat and Mass Transfer ( IF 7 ) Pub Date : 2021-07-05 , DOI: 10.1016/j.icheatmasstransfer.2021.105459
Gangtao Liang 1 , Lei Li 1 , Liuzhu Chen 1 , Shihe Zhou 2 , Shengqiang Shen 1
Affiliation  

Droplet impinging on a flowing liquid film is investigated both experimentally and numerically in this study. Emphasis is placed on the interfacial evolution and dynamic feature as well as the corresponding underlying mechanisms behind. Results indicate that demarcation between splashing and non-splashing regimes can be expressed by a linear relationship between droplet Weber number and film flow Reynolds number, and a correlation estimating splashing threshold with mean absolute error of less than 2% is built up. While for the interface dynamic feature, increasing film flow rate leads to an asymmetrical interfacial evolution. In particular to the splashing at the higher film flow rates, it preferably takes place in the upstream position, but significantly suppressed in the downstream. Despite the very weak dependence of crown radial dimensions on impact velocity, the crown radiuses in the downstream are larger than those in the upstream due mainly to film shear force and streamwise migration, especially under high impact velocities. The crown top radius is reduced with increasing film flow rate as more liquid mass getting into the crown wall, but for the crown bottom radius, its effect is negligible. Increasing impact velocity leads to the increasing of crown both upstream and downstream heights, and the value in the upstream is much larger than the downstream, mainly caused by different intensities of flow kinematic discontinuity inside a liquid film. This asymmetry is aggravated further with increasing the film flow rate.



中文翻译:

液滴对流动液膜的影响:实验和数值测定

在本研究中,通过实验和数值方法研究了液滴撞击流动的液膜。重点放在界面演化和动态特征以及背后相应的潜在机制上。结果表明,飞溅和非飞溅状态之间的界限可以用液滴韦伯数和薄膜流雷诺数之间的线性关系来表示,并且建立了平均绝对误差小于 2% 的相关性估计飞溅阈值。而对于界面动态特征,增加薄膜流速会导致不对称的界面演变。特别是对于在较高膜流速下的飞溅,它优选发生在上游位置,但在下游被显着抑制。尽管冠部径向尺寸对冲击速度的依赖性非常弱,但下游冠部半径比上游大,主要是由于薄膜剪切力和流向迁移,特别是在高冲击速度下。随着更多的液体质量进入冠壁,冠顶半径随着膜流速的增加而减小,但对于冠底半径,其影响可以忽略不计。增加冲击速度导致上游和下游的冠高增加,上游的值远大于下游的值,主要是由于液膜内部流动运动不连续的强度不同造成的。随着薄膜流速的增加,这种不对称性进一步加剧。下游冠部半径大于上游,主要是由于薄膜剪切力和流向迁移,特别是在高冲击速度下。随着更多的液体质量进入冠壁,冠顶半径随着膜流速的增加而减小,但对于冠底半径,其影响可以忽略不计。增加冲击速度导致上游和下游的冠高增加,上游的值远大于下游的值,主要是由于液膜内部流动运动不连续的强度不同造成的。随着薄膜流速的增加,这种不对称性进一步加剧。下游冠部半径大于上游,主要是由于薄膜剪切力和流向迁移,特别是在高冲击速度下。随着更多的液体质量进入冠壁,冠顶半径随着膜流速的增加而减小,但对于冠底半径,其影响可以忽略不计。增加冲击速度导致上游和下游的冠高增加,上游的值远大于下游的值,主要是由于液膜内部流动运动不连续性的强度不同造成的。随着薄膜流速的增加,这种不对称性进一步加剧。随着更多的液体质量进入冠壁,冠顶半径随着膜流速的增加而减小,但对于冠底半径,其影响可以忽略不计。增加冲击速度导致上游和下游的冠高增加,上游的值远大于下游的值,主要是由于液膜内部流动运动不连续的强度不同造成的。随着薄膜流速的增加,这种不对称性进一步加剧。随着更多的液体质量进入冠壁,冠顶半径随着膜流速的增加而减小,但对于冠底半径,其影响可以忽略不计。增加冲击速度导致上游和下游的冠高增加,上游的值远大于下游的值,主要是由于液膜内部流动运动不连续的强度不同造成的。随着薄膜流速的增加,这种不对称性进一步加剧。

更新日期:2021-07-06
down
wechat
bug