当前位置: X-MOL 学术GeoHealth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparative Study on Temperature Response of Hydropower Development in the Dry-Hot Valley
GeoHealth ( IF 4.8 ) Pub Date : 2021-07-05 , DOI: 10.1029/2021gh000438
D C Wang 1, 2 , X Zhang 1 , Y Huang 3, 4 , X Wang 1 , W Zhang 1 , Z J Cao 1 , Y Xin 1 , M Qu 1
Affiliation  

Due to the specific hydrothermal conditions of dry-hot valleys, temperature changes caused by the development of large-scale hydropower projects may be more extreme than they are in other regions. In this study, we analyzed these temperature changes at four hydropower stations in both dry-hot and non-dry-hot valleys. Based on the calculated relative temperatures of the downstream river and the areas surrounding the reservoirs, we employed two indices to quantify the influence of the reservoirs on the temperatures of these two regions: the downstream river temperature change and the reservoir effect change intensity. Our results are as follows: (a) In the downstream rivers, the temperature regulation effect was more pronounced in the wet season; in the regions surrounding the reservoirs, the temperature regulation effect was more pronounced in the dry season. (b) The downstream river temperature in both the dry-hot and wet-hot valleys exhibited noticeable warming in both the wet and dry seasons, while the cold-dry valley was characterized by cooling in the dry season and warming in the wet season. With the exception of the Liyuan station (where the influence of the reservoir on the downstream temperatures only extended to a distance of 9 km from the dam) during the dry season, the existence of the hydropower stations affected the temperatures of the entire downstream region. (c) For the areas surrounding the reservoir, the presence of a hydropower station mainly caused the temperatures in the dry-hot valleys to rise and the temperatures in the non-dry-hot valleys to decrease.

中文翻译:

干热河谷水电开发温度响应对比研究

由于干热河谷特定的热液条件,大型水电项目的开发造成的温度变化可能比其他地区更为极端。在这项研究中,我们分析了干热和非干热河谷四个水电站的温度变化。根据计算出的下游河流和水库周边区域的相对温度,我们采用两个指标来量化水库对这两个区域温度的影响:下游河流温度变化和水库效应变化强度。我们的研究结果如下: (a) 在下游河流中,雨季的温度调节效果更明显;在水库周边地区,旱季调温效果更明显。(b) 干热河谷和湿热河谷的下游河温在干湿季均表现出明显的升温趋势,而干冷河谷则表现为旱季降温、雨季升温。在旱季,除了梨园站(水库对下游温度的影响仅延伸到距大坝 9 公里的距离)外,水电站的存在影响了整个下游地区的温度。(c) 水库周边地区,水电站的存在主要导致干热河谷温度升高,非干热河谷温度下降。(b) 干热河谷和湿热河谷的下游河温在干湿季均表现出明显的升温趋势,而干冷河谷则表现为旱季降温、雨季升温。在旱季,除了梨园站(水库对下游温度的影响仅延伸到距大坝 9 公里的距离)外,水电站的存在影响了整个下游地区的温度。(c) 水库周边地区,水电站的存在主要导致干热河谷温度升高,非干热河谷温度下降。(b) 干热河谷和湿热河谷的下游河温在干湿季均表现出明显的升温趋势,而干冷河谷则表现为旱季降温、雨季升温。在旱季,除了梨园站(水库对下游温度的影响仅延伸到距大坝 9 公里的距离)外,水电站的存在影响了整个下游地区的温度。(c) 水库周边地区,水电站的存在主要导致干热河谷温度升高,非干热河谷温度下降。而干冷河谷则具有旱季降温、雨季升温的特点。在旱季,除了梨园站(水库对下游温度的影响仅延伸到距大坝 9 公里的距离)外,水电站的存在影响了整个下游地区的温度。(c) 水库周边地区,水电站的存在主要导致干热河谷温度升高,非干热河谷温度下降。而干冷河谷则具有旱季降温、雨季升温的特点。在旱季,除了梨园站(水库对下游温度的影响仅延伸到距大坝 9 公里的距离)外,水电站的存在影响了整个下游地区的温度。(c) 水库周边地区,水电站的存在主要导致干热河谷温度升高,非干热河谷温度下降。水电站的存在影响了整个下游地区的温度。(c) 水库周边地区,水电站的存在主要导致干热河谷温度升高,非干热河谷温度下降。水电站的存在影响了整个下游地区的温度。(c) 水库周边地区,水电站的存在主要导致干热河谷温度升高,非干热河谷温度下降。
更新日期:2021-07-18
down
wechat
bug