当前位置: X-MOL 学术Ann. Nucl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparisons between passive RCCSS on degree of passive safety features against accidental conditions and methodology to determine structural thickness of scaled-down heat removal test facilities
Annals of Nuclear Energy ( IF 1.9 ) Pub Date : 2021-07-06 , DOI: 10.1016/j.anucene.2021.108512
Kuniyoshi Takamatsu 1 , Tatsuya Matsumoto 2 , Wei Liu 2 , Koji Morita 2
Affiliation  

Reactor Cavity Cooling Systems (RCCSs) with passive safety features use the atmosphere as a coolant, which cannot be lost; however, the drawback is that they are easily affected by atmospheric disturbances. To realize the commercial application of two types of passive RCCSs, their safety must be evaluated, i.e., they must be able to remove heat from the reactor at all times and under any conditions, including both expected and unexpected natural phenomena and accidents. The objectives of this study are to understand the characteristics and the degree of passive safety features for heat removal by comparing RCCSs based on atmospheric radiation and on atmospheric natural circulation under the same conditions. Simulations of accidental conditions, such as increasing average heat transfer coefficient via natural convection due to natural disasters, were performed using STAR-CCM+, and a methodology to control the amount of heat removal was discussed. A new RCCS based on atmospheric radiation is recommended because of the excellent degree of passive safety features/conditions, and the ability to control amount of heat removal by heat transfer surfaces. Finally, a methodology to determine the structural thickness of RCCS of scaled-down heat removal test facilities for reproducing natural convection and radiation was developed, and experimental methods using pressurized and decompressed chambers were proposed. The authors are convinced that the proposed RCCS based on atmospheric radiation has advantage that the temperature of the RPV can be maintained stably against the disturbance of outside air.



中文翻译:

被动 RCCSS 与意外条件下被动安全特性程度的比较和确定按比例缩小的排热测试设施结构厚度的方法

具有被动安全特性的反应堆腔体冷却系统 (RCCS) 使用大气作为冷却剂,不会流失;但缺点是容易受到大气扰动的影响。为了实现两类被动式RCCS的商业应用,必须对其安全性进行评估,即它们必须能够在任何时间和任何条件下从反应堆中排出热量,包括预期和意外的自然现象和事故。本研究的目的是通过比较相同条件下基于大气辐射和大气自然环流的 RCCSs 来了解散热的被动安全特征和程度。模拟意外情况,例如由于自然灾害导致的自然对流增加平均传热系数,使用 STAR-CCM+ 进行,并讨论了控制热量去除量的方法。推荐基于大气辐射的新 RCCS,因为它具有出色的被动安全特性/条件,并且能够控制传热表面的散热量。最后,开发了一种确定用于再现自然对流和辐射的缩小排热试验设施的 RCCS 结构厚度的方法,并提出了使用加压和减压室的试验方法。作者确信,所提出的基于大气辐射的 RCCS 的优势在于,RPV 的温度可以保持稳定,不受外界空气的干扰。推荐基于大气辐射的新 RCCS,因为它具有出色的被动安全特性/条件,并且能够控制传热表面的散热量。最后,开发了一种确定用于再现自然对流和辐射的缩小排热试验设施的 RCCS 结构厚度的方法,并提出了使用加压和减压室的试验方法。作者确信,所提出的基于大气辐射的 RCCS 的优势在于,RPV 的温度可以保持稳定,不受外界空气的干扰。推荐基于大气辐射的新 RCCS,因为它具有出色的被动安全特性/条件,并且能够控制传热表面的散热量。最后,开发了一种确定用于再现自然对流和辐射的缩小排热试验设施的 RCCS 结构厚度的方法,并提出了使用加压和减压室的试验方法。作者确信,所提出的基于大气辐射的 RCCS 的优势在于,RPV 的温度可以保持稳定,不受外界空气的干扰。以及控制传热表面散热量的能力。最后,开发了一种确定用于再现自然对流和辐射的缩小排热试验设施的 RCCS 结构厚度的方法,并提出了使用加压和减压室的试验方法。作者确信,所提出的基于大气辐射的 RCCS 的优势在于,RPV 的温度可以保持稳定,不受外界空气的干扰。以及控制传热表面散热量的能力。最后,开发了一种确定用于再现自然对流和辐射的缩小排热试验设施的 RCCS 结构厚度的方法,并提出了使用加压和减压室的试验方法。作者确信,所提出的基于大气辐射的 RCCS 的优势在于,RPV 的温度可以保持稳定,不受外界空气的干扰。

更新日期:2021-07-06
down
wechat
bug