当前位置: X-MOL 学术Neuromodulation › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neuromodulation in Beta-Band Power Between Movement Execution and Inhibition in the Human Hippocampus
Neuromodulation: Technology at the Neural Interface ( IF 2.8 ) Pub Date : 2022-02-03 , DOI: 10.1111/ner.13486
Roberto Martin Del Campo-Vera 1 , Austin M Tang 1 , Angad S Gogia 1 , Kuang-Hsuan Chen 1 , Rinu Sebastian 1 , Zachary D Gilbert 1 , George Nune 2 , Charles Y Liu 3 , Spencer Kellis 4 , Brian Lee 3
Affiliation  

Introduction

The hippocampus is thought to be involved in movement, but its precise role in movement execution and inhibition has not been well studied. Previous work with direct neural recordings has found beta-band (13–30 Hz) modulation in both movement execution and inhibition throughout the motor system, but the role of beta-band modulation in the hippocampus during movement inhibition is not well understood. Here, we perform a Go/No-Go reaching task in ten patients with medically refractory epilepsy to study human hippocampal beta-power changes during movement.

Materials and Methods

Ten epilepsy patients (5 female; ages 21–46) were implanted with intracranial depth electrodes for seizure monitoring and localization. Local field potentials were sampled at 2000 Hz during a Go/No-Go movement task. Comparison of beta-band power between Go and No-Go conditions was conducted using Wilcoxon signed-rank hypothesis testing for each patient. Sub-analyses were conducted to assess differences in the anterior vs posterior contacts, ipsilateral vs contralateral contacts, and male vs female beta-power values.

Results

Eight out of ten patients showed significant beta-power decreases during the Go movement response (p < 0.05) compared to baseline. Eight out of ten patients also showed significant beta-power increases in the No-Go condition, occurring in the absence of movement. No significant differences were noted between ipsilateral vs contralateral contacts nor in anterior vs posterior hippocampal contacts. Female participants had a higher task success rate than males and had significantly greater beta-power increases in the No-Go condition (p < 0.001).

Conclusion

These findings indicate that increases in hippocampal beta power are associated with movement inhibition. To the best of our knowledge, this study is the first to report this phenomenon in the human hippocampus. The beta band may represent a state-change signal involved in motor processing. Future focus on the beta band in understanding human motor and impulse control will be vital.



中文翻译:

人类海马体运动执行和抑制之间 Beta 带功率的神经调节

介绍

海马体被认为与运动有关,但其在运动执行和抑制中的确切作用尚未得到很好的研究。先前对直接神经记录的研究发现,在整个运动系统的运动执行和抑制中都存在 β 波段(13-30 Hz)调制,但在运动抑制期间海马中 β 波段调制的作用尚不清楚。在这里,我们对 10 名药物难治性癫痫患者执行 Go/No-Go 到达任务,以研究运动过程中人类海马 β 功率的变化。

材料和方法

10 名癫痫患者(5 名女性;年龄 21-46 岁)被植入颅内深度电极,用于癫痫发作监测和定位。在 Go/No-Go 运动任务期间,以 2000 Hz 的频率对局部场电位进行采样。使用 Wilcoxon 符号秩假设检验对每位患者进行 Go 和 No-Go 条件之间的 β 波段功率比较。进行子分析以评估前接触与后接触、同侧与对侧接触以及男性与女性 β 功率值的差异。

结果

与基线相比,十分之八的患者在围棋运动反应期间显示出显着的 β 功率下降 ( p  < 0.05)。十分之八的患者在 No-Go 条件下也表现出显着的 β 功率增加,发生在没有运动的情况下。同侧与对侧接触之间以及前海马与后海马接触之间没有显着差异。女性参与者的任务成功率高于男性,并且在 No-Go 条件下具有显着更大的 β 功率增加 ( p  < 0.001)。

结论

这些发现表明海马β功率的增加与运动抑制有关。据我们所知,这项研究是第一个在人类海马体中报告这种现象的研究。β波段可能代表运动处理中涉及的状态变化信号。未来在了解人类运动和冲动控制方面关注 Beta 波段将是至关重要的。

更新日期:2022-02-03
down
wechat
bug