当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Geometry optimization of a planar double wishbone suspension based on whole-range nonlinear dynamic model
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.7 ) Pub Date : 2021-07-04 , DOI: 10.1177/09544070211026205
Zhihua Niu 1, 2 , Sun Jin 1, 2 , Rongrong Wang 1 , Yansong Zhang 1, 2
Affiliation  

Dynamic analysis is an essential task in the geometry design of suspension systems. Whereas the dynamic simulation based on numerical software like Adams is quite slowly and the existing analytical models of the nonlinear suspension geometry are mostly based on small displacement hypothesis, this paper aims to propose a whole-range dynamic model with high computational efficiency for planar double wishbone suspensions and further achieve the fast optimal design of suspension geometry. Selection of the new generalized coordinate and explicit solutions of the basic four-bar mechanism dramatically reduce the complexity of suspension geometry representation and provide analytical solutions for all of the time varying dimensions. By this means, the running speed and computational accuracy of the new model are guaranteed simultaneously. Furthermore, an original Matlab/Simulink implementation is given to maintain the geometric nonlinearity in the solving process of dynamic differential equations. After verifying its accuracy with an ADAMS prototype, the presented whole-range model is used in the vast-parameter optimization of suspension geometry. Since both kinematic and dynamic performances are evaluated in the objective function, the optimization is qualified to give a comprehensive suggestion to the design of suspension geometry.



中文翻译:

基于全范围非线性动力学模型的平面双横臂悬架几何优化

动态分析是悬架系统几何设计中的一项基本任务。鉴于Adams等基于数值软件的动力学模拟速度较慢,现有非线性悬架几何分析模型多基于小位移假设,本文旨在提出一种具有高计算效率的平面双叉臂全范围动力学模型。悬架,并进一步实现悬架几何形状的快速优化设计。基本四杆机构的新广义坐标和显式解的选择显着降低了悬架几何表示的复杂性,并为所有时变维度提供了解析解。通过这种方式,同时保证了新模型的运行速度和计算精度。此外,给出了原始的 Matlab/Simulink 实现,以保持动态微分方程求解过程中的几何非线性。在用 ADAMS 原型验证其准确性后,提出的全范围模型用于悬架几何的大量参数优化。由于运动学和动力学性能都在目标函数中进行评估,因此优化可以为悬架几何设计提供综合建议。

更新日期:2021-07-05
down
wechat
bug