当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock
Nature Photonics ( IF 35.0 ) Pub Date : 2021-07-05 , DOI: 10.1038/s41566-021-00842-7
Meng Han 1, 2 , Peipei Ge 1 , Jiguo Wang 1 , Zhenning Guo 1 , Yiqi Fang 1 , Xueyan Ma 1 , Xiaoyang Yu 1 , Yongkai Deng 1 , Qihuang Gong 1, 3, 4, 5, 6 , Yunquan Liu 1, 3, 4, 5, 6 , Hans Jakob Wörner 2
Affiliation  

Laser-induced electron tunnelling—which triggers a broad range of ultrafast phenomena such as the generation of attosecond light pulses, photoelectron diffraction and holography—has laid the foundation for strong-field physics and attosecond science. Using the attoclock constructed by single-colour elliptically polarized laser fields, previous experiments have measured the tunnelling rates, exit positions, exit velocities and delay times for some specific electron trajectories, which are mostly created at the field peak instant, that is, when the laser electric field and the formed potential barrier are stationary in terms of the derivative versus time. From the view of wave-particle dualism, the electron phase under a classically forbidden, tunnelling barrier has not been measured, which is at the heart of quantum tunnelling physics. Here we present a robust measurement of tunnelling dynamics including the electron sub-barrier phase and amplitude. We combine the attoclock technique with two-colour phase-of-phase (POP) spectroscopy to accurately calibrate the angular streaking relation and to probe the non-stationary tunnelling dynamics by manipulating a rapidly changing potential barrier. This POP attoclock directly links the measured phase of the two-colour relative phase with the ionization instant for the photoelectron with any final momentum on the detector, allowing us to reconstruct the imaginary tunnelling time and the accumulated phase under the barrier. The POP attoclock provides a general time-resolved approach to accessing the underlying quantum dynamics in intense light–matter interactions.



中文翻译:

具有相位相位 attoclock 的亚库仑势垒隧穿的完整表征

激光诱导的电子隧穿——它触发了广泛的超快现象,如阿秒光脉冲的产生、光电子衍射和全息术——为强场物理学和阿秒科学奠定了基础。利用单色椭圆偏振激光场构建的 attoclock,之前的实验已经测量了一些特定电子轨迹的隧穿速率、出口位置、出口速度和延迟时间,这些轨迹大多是在场峰时刻产生的,即当就导数对时间而言,激光电场和形成的势垒是固定的。从波粒二象性的角度来看,在经典禁止隧道势垒下的电子相尚未被测量,这是量子隧道物理学的核心。在这里,我们提出了对隧道动力学的稳健测量,包括电子亚势垒相位和幅度。我们将 attoclock 技术与双色相位 (POP) 光谱相结合,以准确校准角条纹关系,并通过操纵快速变化的势垒来探测非平稳隧道动力学。这个 POP attoclock 直接将双色相对相位的测量相位与探测器上具有任何最终动量的光电子的电离时刻联系起来,使我们能够重建想象的隧穿时间和势垒下的累积相位。POP attoclock 提供了一种通用的时间分辨方法来访问强光 - 物质相互作用中的潜在量子动力学。

更新日期:2021-07-05
down
wechat
bug