当前位置: X-MOL 学术Commun. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heat transport through propagon-phonon interaction in epitaxial amorphous-crystalline multilayers
Communications Physics ( IF 5.5 ) Pub Date : 2021-07-05 , DOI: 10.1038/s42005-021-00653-w
Takafumi Ishibe 1 , Ryo Okuhata 1 , Tatsuya Kaneko 1 , Yoshiaki Nakamura 1 , Masato Yoshiya 2 , Seisuke Nakashima 3 , Akihiro Ishida 3
Affiliation  

Managing heat dissipation is a necessity for nanoscale electronic devices with high-density interfaces, but despite considerable effort, it has been difficult to establish the phonon transport physics at the interface due to a “complex” interface layer. In contrast, the amorphous/epitaxial interface is expected to have almost no “complex” interface layer due to the lack of lattice mismatch strain and less associated defects. Here, we experimentally observe the extremely-small interface thermal resistance per unit area at the interface of the amorphous-germanium sulfide/epitaxial-lead telluride superlattice (~0.8 ± 4.0 × 10‒9 m2KW−1). Ab initio lattice dynamics calculations demonstrate that high phonon transmission through this interface can be predicted, like electron transport physics, from large vibron-phonon density-of-states overlapping and phonon group velocity similarity between propagon in amorphous layer and “conventional” phonon in crystal. This indicates that controlling phonon (or vibron) density-of-states and phonon group velocity similarity can be a comprehensive guideline to manage heat conduction in nanoscale systems.



中文翻译:

通过外延非晶-晶体多层膜中的传播体-声子相互作用进行热传输

管理散热对于具有高密度界面的纳米级电子设备来说是必要的,但尽管付出了相当大的努力,但由于“复杂”的界面层,很难在界面上建立声子传输物理。相比之下,由于缺乏晶格失配应变和较少的相关缺陷,预计非晶/外延界面几乎没有“复杂”界面层。在这里,我们通过实验观察到非晶硫化锗/外延碲化铅超晶格(~0.8 ± 4.0 × 10 ‒9 m 2 KW -1)。从头算晶格动力学计算表明,通过该界面的高声子传输可以像电子传输物理学一样,通过非晶层中的传播体与晶体中的“常规”声子之间的大振动-声子态密度重叠和声子群速度相似性来预测. 这表明控制声子(或振动子)态密度和声子群速度相似性可以成为管理纳米级系统热传导的综合指南。

更新日期:2021-07-05
down
wechat
bug