当前位置: X-MOL 学术Found. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Measurement Problem, an Ontological Solution
Foundations of Physics ( IF 1.5 ) Pub Date : 2021-07-05 , DOI: 10.1007/s10701-021-00475-4
Peter A. Jackson 1 , John S. Minkowski 1
Affiliation  

A physical mechanical sequence is proposed representing measurement interactions ‘hidden' within QM's proverbial ‘black box'. Our ‘beam splitter' pairs share a polar angle, but head in opposite directions, so ‘led' by opposite (+ or −) hemisphere rotations. For orbital ‘ellipticity', we use the inverse value momentum ‘pairs' of Maxwell's ‘linear' and ‘curl' momenta, seen as vectors on the Poincare spherical surface. Values change inversely from 0 to 1 over 90 degrees, then ± inverts. (‘Linear' goes to 0 at each pole, where ‘curl' is + or − 1). Detector polarising screens consist of electrons with the same vector distributions, but polar angles set independently by A & B. The absorption/re-emission interaction process is modelled as surface vector additions at the angle of polar latitude of each interaction. This ‘collapse' of characteristic ‘wave values' is really then simply ‘re-polarisation', with new ellipticity. We then obtain the relation Cosθ at polarisers. We may simplify this to new ellipses with major/minor axis values. Considering as spherical orbital angular momentum (OAM) rotation we invoke the unique quality of spheres to rotate concurrently on three axes! Rotating on y or z axes concurrent with x axis spin can return surface points to starting positions with non-integer x axis rotations, from half to infinity! (i.e. adding one 180° y or z axis rotation to a 180° x axis rotation produces ‘spin half'). Second interactions at photomultiplier/ analysers are identical but at two orthogonal ‘channels'. Vector addition interactions at BOTH channel orientations normally produce a vector value of adequate amplitude to give a *click* from the MAJOR axis direction. At the ‘crossover' points at near circular polarity the orthogonal ‘certainty' is ~ 50:50, so both or neither channels may produce a ‘click'. The apparently unphysical but proved ‘Malus' law' relation; Cos2θ emerges physically from the 2nd set of interactions. The main departure from QM's assumptions are; That the original pair members each actually possessed two inverse momenta sets; ‘curl' and ‘linear'. Also that complex ‘vector additions' of those pairs occurs. Vector quantities allow A & B to reverse their OWN finding by reversing dial setting, reproducing experimental outputs without problematic ‘non-locality'.



中文翻译:

测量问题,一种本体论解决方案

提出了一种物理机械序列,表示“隐藏”在 QM 众所周知的“黑匣子”中的测量交互。我们的“分束器”对共享一个极角,但朝向相反的方向,因此由相反的(+ 或 -)半球旋转“引导”。对于轨道“椭圆度”,我们使用麦克斯韦“线性”和“卷曲”动量的反值动量“对”,被视为庞加莱球面上的向量。值在 90 度范围内从 0 到 1 反向变化,然后 ± 反转。(“线性”在每个极点处变为 0,其中“卷曲”为 + 或 - 1)。探测器偏振屏由具有相同矢量分布的电子组成,但极角由 A 和 B 独立设置。吸收/再发射相互作用过程被建模为在每个相互作用的极纬度角度处的表面矢量相加。这种特征“波值”的“崩溃”实际上只是“重新极化”,具有新的椭圆度。然后我们在偏振器处获得关系 Cosθ。我们可以将其简化为具有长/短轴值的新椭圆。考虑到球面轨道角动量 (OAM) 旋转,我们调用球体的独特品质在三个轴上同时旋转!在yz轴上旋转与x轴旋转同时旋转可以将表面点返回到具有非整数 x轴旋转的起始位置,从一半到无穷大!(即添加一个 180° y 或 z 轴旋转到 180° x轴旋转产生“自旋一半”)。光电倍增管/分析仪的第二次相互作用是相同的,但在两个正交“通道”。两个通道方向上的矢量相加相互作用通常会产生足够幅度的矢量值,以从主轴方向发出*咔嗒声*。在接近圆形极性的“交叉”点处,正交“确定性”约为 50:50,因此两个通道或两个通道都不会产生“咔哒”声。看似非物理但已证明的“Malus”定律关系;Cos 2 θ物理上出现在第二组相互作用中。与 QM 假设的主要背离是:原来的配对成员每个人实际上都拥有两个反动量集;'卷曲'和'线性'。这些对的复杂“向量加法”也会发生。矢量量允许 A 和 B 通过反转表盘设置来反转他们自己的发现,再现实验输出而不会出现“非局部性”问题。

更新日期:2021-07-05
down
wechat
bug