当前位置: X-MOL 学术Geobiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Sedimentary Geochemistry and Paleoenvironments Project
Geobiology ( IF 3.7 ) Pub Date : 2021-07-05 , DOI: 10.1111/gbi.12462
Úna C Farrell 1 , Rifaat Samawi 2 , Savitha Anjanappa 3 , Roman Klykov 3 , Oyeleye O Adeboye 4 , Heda Agic 5 , Anne-Sofie C Ahm 6 , Thomas H Boag 7 , Fred Bowyer 8 , Jochen J Brocks 9 , Tessa N Brunoir 10 , Donald E Canfield 11 , Xiaoyan Chen 12 , Meng Cheng 13 , Matthew O Clarkson 14 , Devon B Cole 15 , David R Cordie 16 , Peter W Crockford 17 , Huan Cui 18, 19 , Tais W Dahl 20 , Lucas D Mouro 21 , Keith Dewing 22 , Stephen Q Dornbos 23 , Nadja Drabon 24 , Julie A Dumoulin 25 , Joseph F Emmings 26 , Cecilia R Endriga 2 , Tiffani A Fraser 27 , Robert R Gaines 28 , Richard M Gaschnig 29 , Timothy M Gibson 7 , Geoffrey J Gilleaudeau 30 , Benjamin C Gill 31 , Karin Goldberg 32 , Romain Guilbaud 33 , Galen P Halverson 34 , Emma U Hammarlund 35 , Kalev G Hantsoo 36 , Miles A Henderson 37 , Malcolm S W Hodgskiss 38 , Tristan J Horner 39 , Jon M Husson 40 , Benjamin Johnson 41 , Pavel Kabanov 22 , C Brenhin Keller 42 , Julien Kimmig 43 , Michael A Kipp 44 , Andrew H Knoll 45 , Timmu Kreitsmann 46 , Marcus Kunzmann 47 , Florian Kurzweil 48 , Matthew A LeRoy 31 , Chao Li 13 , Alex G Lipp 49 , David K Loydell 50 , Xinze Lu 51 , Francis A Macdonald 5 , Joseph M Magnall 52 , Kaarel Mänd 53 , Akshay Mehra 42 , Michael J Melchin 54 , Austin J Miller 51 , N Tanner Mills 55 , Chiza N Mwinde 56 , Brennan O'Connell 57 , Lawrence M Och 58 , Frantz Ossa Ossa 59 , Anais Pagès 60 , Kärt Paiste 61 , Camille A Partin 62 , Shanan E Peters 63 , Peter Petrov 64 , Tiffany L Playter 65 , Stephanie Plaza-Torres 66 , Susannah M Porter 5 , Simon W Poulton 8 , Sara B Pruss 67 , Sylvain Richoz 68 , Samantha R Ritzer 2 , Alan D Rooney 7 , Swapan K Sahoo 69 , Shane D Schoepfer 70 , Judith A Sclafani 2 , Yanan Shen 12 , Oliver Shorttle 38 , Sarah P Slotznick 42 , Emily F Smith 36 , Sam Spinks 47 , Richard G Stockey 2 , Justin V Strauss 42 , Eva E Stüeken 71 , Sabrina Tecklenburg 2 , Danielle Thomson 72 , Nicholas J Tosca 73 , Gabriel J Uhlein 74 , Maoli N Vizcaíno 2 , Huajian Wang 75 , Tristan White 7 , Philip R Wilby 26 , Christina R Woltz 5 , Rachel A Wood 76 , Lei Xiang 77 , Inessa A Yurchenko 78 , Tianran Zhang 42 , Noah J Planavsky 7 , Kimberly V Lau 79 , David T Johnston 24 , Erik A Sperling 2
Affiliation  

1 INTRODUCTION

Geobiology explores how Earth's system has changed over the course of geologic history and how living organisms on this planet are impacted by or are indeed causing these changes. For decades, geologists, paleontologists, and geochemists have generated data to investigate these topics. Foundational efforts in sedimentary geochemistry utilized spreadsheets for data storage and analysis, suitable for several thousand samples, but not practical or scalable for larger, more complex datasets. As results have accumulated, researchers have increasingly gravitated toward larger compilations and statistical tools. New data frameworks have become necessary to handle larger sample sets and encourage more sophisticated or even standardized statistical analyses.

In this paper, we describe the Sedimentary Geochemistry and Paleoenvironments Project (SGP; Figure 1), which is an open, community-oriented, database-driven research consortium. The goals of SGP are to (1) create a relational database tailored to the needs of the deep-time (millions to billions of years) sedimentary geochemical research community, including assembling and curating published and associated unpublished data; (2) create a website where data can be retrieved in a flexible way; and (3) build a collaborative consortium where researchers are incentivized to contribute data by giving them priority access and the opportunity to work on exciting questions in group papers. Finally, and more idealistically, the goal was to establish a culture of modern data management and data analysis in sedimentary geochemistry. Relative to many other fields, the main emphasis in our field has been on instrument measurement of sedimentary geochemical data rather than data analysis (compared with fields like ecology, for instance, where the post-experiment ANOVA (analysis of variance) is customary). Thus, the longer-term goal was to build a collaborative environment where geobiologists and geologists can work and learn together to assess changes in geochemical signatures through Earth history.

image
FIGURE 1
Open in figure viewerPowerPoint
The Sedimentary Geochemistry and Paleoenvironments Project (SGP) is an open, collaborative consortium focused on understanding how the Earth has changed through time through analyses of large sedimentary geochemical datasets

With respect to the data product, SGP is focused on assembling a well-vetted and comprehensive dataset that is tractable to multivariate statistical analyses accounting for multiple geological and methodological biases. Phase 1 of the project, which focused on the Neoproterozoic and Paleozoic, has been completed. Future phases will capture a broader range of geologic time, data types, and geography. The database contains tens of thousands of unpublished data points provided by consortium members, as well as detailed metadata that go beyond what is contained in papers. In many cases, these represent measurements that are tangential to a given published study but still of high utility to database studies; these allow the community to address questions that would be impossible to answer solely with the published data. For instance, in order to use a proxy such as Mo/TOC (total organic carbon) ratios in mudrocks deposited under a euxinic water column, the full suite of trace metal, iron speciation, and total organic carbon data is needed. Likewise, geospatial information is required to account for sampling biases, and many statistical learning approaches cannot accept, or have difficulty with, incomplete geological predictor variables. Ultimately, it is this complete data matrix that will allow for SGP’s most insightful analyses.

This paper serves as an introduction to SGP, the process by which our data products are created, a description of the Phase 1 data product and a citable reference for that product, a description of the SGP website and API (Application Programming Interface) for open access, and a statement of our future goals.



中文翻译:

沉积地球化学与古环境项目

1 简介

地球生物学探索地球系统在地质历史过程中是如何变化的,以及地球上的生物如何受到或确实导致这些变化的影响。几十年来,地质学家、古生物学家和地球化学家已经生成数据来研究这些主题。沉积地球化学的基础性工作利用电子表格进行数据存储和分析,适用于数千个样本,但对于更大、更复杂的数据集不实用或不可扩展。随着结果的积累,研究人员越来越倾向于更大的汇编和统计工具。新的数据框架已成为处理更大样本集并鼓励更复杂甚至标准化的统计分析的必要条件。

在本文中,我们描述了沉积地球化学和古环境项目(SGP;图 1),这是一个开放的、面向社区的、数据库驱动的研究联盟。SGP 的目标是 (1) 创建一个适合深时间(数百万至数十亿年)沉积地球化学研究界需求的关系数据库,包括收集和管理已发表和相关的未发表数据;(2) 创建一个可以灵活检索数据的网站;(3) 建立一个协作联盟,通过给予研究人员优先访问权和研究小组论文中令人兴奋的问题的机会,激励研究人员贡献数据。最后,更理想化的是,目标是在沉积地球化学中建立现代数据管理和数据分析的文化。沉积地球化学数据的仪器测量而不是数据分析(与生态学等领域相比,例如,实验后方差分析(方差分析)是习惯的)。因此,长期目标是建立一个协作环境,让地球生物学家和地质学家可以一起工作和学习,以评估地球历史上地球化学特征的变化。

图片
图1
在图形查看器中打开微软幻灯片软件
沉积地球化学和古环境项目 (SGP) 是一个开放的协作联盟,专注于通过分析大型沉积地球化学数据集来了解地球如何随时间变化

关于数据产品,SGP 专注于组装一个经过充分审查和全面的数据集,该数据集易于进行多元统计分析,以解决多种地质和方法偏差。以新元古代和古生界为重点的一期工程已经完成。未来阶段将捕获更广泛的地质时间、数据类型和地理范围。该数据库包含由联盟成员提供的数万个未发表的数据点,以及超出论文所含内容的详细元数据。在许多情况下,这些代表与给定已发表研究相切的测量值,但对数据库研究仍然具有很高的效用;这些使社区能够解决仅使用已发布数据无法回答的问题。例如,为了在常温水柱下沉积的泥岩中使用诸如 Mo/TOC(总有机碳)比率等代理指标,需要全套痕量金属、铁形态和总有机碳数据。同样,需要地理空间信息来解释抽样偏差,并且许多统计学习方法不能接受或难以处理不完整的地质预测变量。最终,正是这个完整的数据矩阵将允许 SGP 进行最有洞察力的分析。不完整的地质预测变量。最终,正是这个完整的数据矩阵将允许 SGP 进行最有洞察力的分析。不完整的地质预测变量。最终,正是这个完整的数据矩阵将允许 SGP 进行最有洞察力的分析。

本文介绍了 SGP、我们的数据产品的创建过程、第一阶段数据产品的描述和该产品的可引用参考、SGP 网站的描述和开放的 API(应用程序编程接口)访问,以及我们未来目标的声明。

更新日期:2021-07-05
down
wechat
bug