当前位置: X-MOL 学术Clim. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the freeze–thaw cycles of shallow soil and connections with environmental factors over the Tibetan Plateau
Climate Dynamics ( IF 4.6 ) Pub Date : 2021-07-02 , DOI: 10.1007/s00382-021-05860-3
Ning Li 1, 2, 3 , Lan Cuo 1, 2, 3, 4 , Yongxin Zhang 5
Affiliation  

Changes in the freeze–thaw cycles of shallow soil have important consequences for surface and subsurface hydrology, land–atmosphere energy and moisture interaction, carbon exchange, and ecosystem diversity and productivity. This work examines the shallow soil freeze–thaw cycle on the Tibetan Plateau (TP) using in–situ soil temperature observations in 0–20 cm soil layer during July 1982–June 2017. The domain and layer averaged beginning frozen day is November 18 and delays by 2.2 days per decade; the ending frozen day is March 9 and advances by 3.2 days per decade; the number of frozen days is 109 and shortens by 5.2 days per decade. Altitude and latitude combined could explain the spatial patterns of annual mean freeze–thaw status well. Stations located near 0 °C contour line experienced dramatic changes in freeze–thaw cycles as seen from subtropical mountain coniferous forest in the southern TP. Soil completely freezes from surface to 20-cm depth in 15 days while completely thaws in 10 days on average. Near-surface soil displays more pronounced changes than deeper soil. Surface air temperature strongly influences the shallow soil freeze–thaw status but snow exerts limited effects. Different thresholds in freeze–thaw status definition lead to differences in the shallow soil freeze–thaw status and multiple-consecutive-day approach appears to be more robust and reliable. Gridded soil temperature products could resolve the spatial pattern of the observed shallow soil freeze–thaw status to some extent but further improvement is needed.



中文翻译:

青藏高原浅层土壤冻融循环及其与环境因素的联系

浅层土壤冻融循环的变化对地表和地下水文、陆地-大气能量和水分相互作用、碳交换以及生态系统多样性和生产力具有重要影响。这项工作使用 1982 年 7 月至 2017 年 6 月期间 0-20 厘米土壤层的原位土壤温度观测来检查青藏高原 (TP) 浅层土壤冻融循环。域和层平均开始冻结日为 11 月 18 日和每十年延误 2.2 天;结束冻结日为 3 月 9 日,每十年提前 3.2 天;冻结天数为109天,每十年缩短5.2天。海拔和纬度相结合可以很好地解释年平均冻融状态的空间格局。从青藏高原南部的亚热带山地针叶林可以看出,位于 0 °C 等高线附近的站点经历了冻融循环的剧烈变化。土壤在 15 天内从表面完全冻结到 20 厘米深度,而平均在 10 天内完全解冻。近地表土壤比深层土壤显示出更明显的变化。地表气温强烈影响浅层土壤冻融状态,但雪的影响有限。冻融状态定义中的不同阈值导致浅层土壤冻融状态的差异,连续多天的方法似乎更稳健可靠。网格化的土壤温度产品可以在一定程度上解决所观察到的浅层土壤冻融状态的空间格局,但需要进一步改进。土壤在 15 天内从表面完全冻结到 20 厘米深度,而平均在 10 天内完全解冻。近地表土壤比深层土壤显示出更明显的变化。地表气温强烈影响浅层土壤冻融状态,但雪的影响有限。冻融状态定义中的不同阈值导致浅层土壤冻融状态的差异,连续多天的方法似乎更稳健可靠。网格化的土壤温度产品可以在一定程度上解决所观察到的浅层土壤冻融状态的空间格局,但需要进一步改进。土壤在 15 天内从表面完全冻结到 20 厘米深度,而平均在 10 天内完全解冻。近地表土壤比深层土壤显示出更明显的变化。地表气温强烈影响浅层土壤冻融状态,但雪的影响有限。冻融状态定义中的不同阈值导致浅层土壤冻融状态的差异,连续多天的方法似乎更稳健可靠。网格化的土壤温度产品可以在一定程度上解决所观察到的浅层土壤冻融状态的空间格局,但需要进一步改进。地表气温强烈影响浅层土壤冻融状态,但雪的影响有限。冻融状态定义中的不同阈值导致浅层土壤冻融状态的差异,连续多天的方法似乎更稳健可靠。网格化的土壤温度产品可以在一定程度上解决所观察到的浅层土壤冻融状态的空间格局,但需要进一步改进。地表气温强烈影响浅层土壤冻融状态,但雪的影响有限。冻融状态定义中的不同阈值导致浅层土壤冻融状态的差异,连续多天的方法似乎更稳健可靠。网格化的土壤温度产品可以在一定程度上解决所观察到的浅层土壤冻融状态的空间格局,但需要进一步改进。

更新日期:2021-07-04
down
wechat
bug