当前位置: X-MOL 学术J. Microsc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy
Journal of Microscopy ( IF 2 ) Pub Date : 2021-07-02 , DOI: 10.1111/jmi.13041
Glyn Nelson 1 , Ulrike Boehm 2 , Steve Bagley 3 , Peter Bajcsy 4 , Johanna Bischof 5 , Claire M Brown 6 , Aurélien Dauphin 7 , Ian M Dobbie 8 , John E Eriksson 9 , Orestis Faklaris 10 , Julia Fernandez-Rodriguez 11 , Alexia Ferrand 12 , Laurent Gelman 13 , Ali Gheisari 14 , Hella Hartmann 14 , Christian Kukat 15 , Alex Laude 1 , Miso Mitkovski 16 , Sebastian Munck 17 , Alison J North 18 , Tobias M Rasse 19 , Ute Resch-Genger 20 , Lucas C Schuetz 21 , Arne Seitz 22 , Caterina Strambio-De-Castillia 23 , Jason R Swedlow 24 , Ioannis Alexopoulos 25 , Karin Aumayr 26 , Sergiy Avilov 27 , Gert-Jan Bakker 28 , Rodrigo R Bammann 29 , Andrea Bassi 30 , Hannes Beckert 31 , Sebastian Beer 32 , Yury Belyaev 33 , Jakob Bierwagen 34 , Konstantin A Birngruber 35 , Manel Bosch 36 , Juergen Breitlow 37 , Lisa A Cameron 38 , Joe Chalfoun 4 , James J Chambers 39 , Chieh-Li Chen 40 , Eduardo Conde-Sousa 41, 42 , Alexander D Corbett 43 , Fabrice P Cordelieres 44 , Elaine Del Nery 45 , Ralf Dietzel 46 , Frank Eismann 47 , Elnaz Fazeli 48 , Andreas Felscher 49 , Hans Fried 50 , Nathalie Gaudreault 51 , Wah Ing Goh 52 , Thomas Guilbert 53 , Roland Hadleigh 29 , Peter Hemmerich 54 , Gerhard A Holst 55 , Michelle S Itano 56 , Claudia B Jaffe 57 , Helena K Jambor 58 , Stuart C Jarvis 59 , Antje Keppler 60 , David Kirchenbuechler 61 , Marcel Kirchner 15 , Norio Kobayashi 62 , Gabriel Krens 63 , Susanne Kunis 64 , Judith Lacoste 65 , Marco Marcello 66 , Gabriel G Martins 67 , Daniel J Metcalf 29 , Claire A Mitchell 68 , Joshua Moore 24 , Tobias Mueller 69 , Michael S Nelson 70 , Stephen Ogg 71 , Shuichi Onami 72 , Alexandra L Palmer 73 , Perrine Paul-Gilloteaux 74 , Jaime A Pimentel 75 , Laure Plantard 13 , Santosh Podder 76 , Elton Rexhepaj 77 , Arnaud Royon 78 , Markku A Saari 79 , Damien Schapman 80 , Vincent Schoonderwoert 81 , Britta Schroth-Diez 82 , Stanley Schwartz 83 , Michael Shaw 84 , Martin Spitaler 85 , Martin T Stoeckl 86 , Damir Sudar 87 , Jeremie Teillon 88 , Stefan Terjung 21 , Roland Thuenauer 89 , Christian D Wilms 29 , Graham D Wright 52 , Roland Nitschke 90
Affiliation  

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.

中文翻译:

QUAREP-LiMi:一项社区驱动的倡议,旨在建立光学显微镜仪器和图像的质量评估和再现性指南

现代光学显微镜已经从一种主要用于进行经验观察的工具发展成为一种复杂的定量设备,成为物理和生命科学研究不可或缺的一部分。如今,几乎每个实验实验室都配有显微镜。然而,尽管它们普遍用于捕获和量化科学现象,但对定量成像技术基础原理的透彻理解以及如何校准、操作和维护显微镜的适当知识都不能被视为理所当然。在评估获取的数据和重现科学实验时经常遇到的有据可查且普遍存在的困难清楚地证明了这一点。事实上,研究表明,超过 70% 的研究人员曾尝试重复另一位科学家的实验,但均以失败告终,而超过一半的研究人员甚至未能重复自己的实验。科学期刊上发表的实验的可重复性危机背后的一个因素是由于缺乏对应用技术的认识和/或缺乏知识而导致对成像方法的频繁报道不足。尽管生物医学研究中使用的某些方法(例如基因组学(例如 DNA 测序、RNA-seq)或细胞术)已经引入了质量控制程序(例如 ENCODE),但光学显微镜仪器和图像的这个问题尚未得到解决。尽管已经发布了许多校准标准和协议,但人们对质量评估和再现性的通用标准和指南缺乏认识和共识。2020 年 4 月,光学显微镜仪器和图像的质量评估和再现性 (QUAREP-LiMi) 倡议成立。该倡议由来自学术界和工业界的成像科学家组成,他们对更好地了解显微镜的性能和局限性以及改进光学显微镜的质量控制 (QC) 有着共同的兴趣。QUAREP-LiMi 计划的最终目标是建立一套通用的质量控制标准、指南、元数据模型和工具,包括详细的协议,最终目的是提高科学研究的可重复性进展。本白皮书 (1) 总结了该领域发现的推动 QUAREP-LiMi 计划启动的主要障碍;(2) 确定迫切需要通过利益相关者社区以基层方式解决这些障碍,这些利益相关者包括研究人员、成像科学家、生物图像分析师、生物图像信息学开发人员、企业合作伙伴、资助机构、标准组织、科学出版商和此类领域的观察员; (3) 概述了 QUAREP-LiMi 计划当前采取的行动,(4) 提出了未来可以采取的步骤,以改善拟议的质量控制管理指南的传播和接受。总而言之,
更新日期:2021-07-02
down
wechat
bug