当前位置: X-MOL 学术bioRxiv. Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Protein flexibility and dissociation pathway differentiation can explain onset of resistance mutations in kinases
bioRxiv - Biochemistry Pub Date : 2021-09-12 , DOI: 10.1101/2021.07.02.450932
Mrinal Shekhar , Zachary Smith , Markus Seeliger , Pratyush Tiwary

Understanding how point mutations can render a ligand or a drug ineffective against a given biological target is a problem of immense fundamental and practical relevance. Often the efficacy of such resistance mutations can be explained purely on a thermo-dynamic basis wherein the mutated system displays a reduced binding affinity for the ligand. However, the more perplexing and harder to explain situation is when two protein sequences have the same binding affinity for a drug. In this work, we demonstrate how all-atom molecular dynamics simulations, specifically using recent developments grounded in statistical mechanics and information theory, can provide a detailed mechanistic rationale for such variances. We establish the dissociation mechanism for the popular anti-cancer drug Imatinib (Gleevec) against wild-type and N387S mutant of Abl kinase. We show how this single point mutation triggers a non-local response in the protein’s flexibility and eventually leads to pathway differentiation during dissociation. This pathway differentiation explains why Gleevec has a long residence time in the wild-type Abl, but for the mutant, by opening up a backdoor pathway for ligand exit, an order of magnitude shorter residence time is obtained. We thus believe that this work marks an efficient and scalable approach to pinpoint the molecular determinants of resistance mutations in biomolecular receptors of pharmacological relevance that are hard to explain using a simple structural perspective and require mechanistic and kinetic insights.

中文翻译:

蛋白质灵活性和解离途径分化可以解释激酶抗性突变的发生

了解点突变如何使配体或药物对给定的生物靶标无效是一个具有巨大基础和实际意义的问题。通常,这种抗性突变的功效可以纯粹基于热力学来解释,其中突变系统显示出对配体的结合亲和力降低。然而,更令人困惑和难以解释的情况是当两个蛋白质序列对药物具有相同的结合亲和力时。在这项工作中,我们展示了全原子分子动力学模拟,特别是使用基于统计力学和信息理论的最新发展,如何为这种差异提供详细的机械原理。我们建立了流行的抗癌药物伊马替尼(格列卫)对 Abl 激酶的野生型和 N387S 突变体的解离机制。我们展示了这种单点突变如何触发蛋白质灵活性的非局部反应,并最终导致解离过程中的通路分化。这种通路分化解释了为什么格列卫在野生型 Abl 中的停留时间长,但对于突变体,通过打开配体退出的后门通路,获得了一个数量级的更短的停留时间。因此,我们认为,这项工作标志着一种有效且可扩展的方法,可以精确定位具有药理学相关性的生物分子受体中耐药突变的分子决定因素,这些因素很难使用简单的结构视角来解释,并且需要机械和动力学见解。这种通路分化解释了为什么格列卫在野生型 Abl 中的停留时间长,但对于突变体,通过打开配体退出的后门通路,获得了一个数量级的更短的停留时间。因此,我们认为,这项工作标志着一种有效且可扩展的方法,可以精确定位具有药理学相关性的生物分子受体中耐药突变的分子决定因素,这些因素很难使用简单的结构视角来解释,并且需要机械和动力学见解。这种通路分化解释了为什么格列卫在野生型 Abl 中的停留时间长,但对于突变体,通过打开配体退出的后门通路,获得了一个数量级的更短的停留时间。因此,我们认为,这项工作标志着一种有效且可扩展的方法,可以精确定位具有药理学相关性的生物分子受体中耐药突变的分子决定因素,这些因素很难使用简单的结构视角来解释,并且需要机械和动力学见解。
更新日期:2021-09-14
down
wechat
bug