Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tribological characteristics of AA7075 composites reinforced with rice husk ash and carbonized eggshells
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ( IF 2.4 ) Pub Date : 2021-07-02 , DOI: 10.1177/14644207211025810
Vivudh Gupta 1 , Balbir Singh 1 , RK Mishra 1
Affiliation  

This paper investigates dry sliding friction and wear behavior of AA7075 composites reinforced with rice husk ash and carbonized eggshells. Composites with varying weight percentages of rice husk ash and carbonized eggshells in the range of 0–5 wt.% were fabricated through stir-casting technique. Density, porosity content, and microhardness were computed before tribological testing. Friction and wear tests were conducted on pin-on-disc type tribometer at room temperature. The samples were tested at different loads (10–50 N) with constant speed of 1 m/s and constant sliding distance of 1500 m. Samples were also tested at different sliding speeds (3 and 5 m/s) with constant normal load of 30 N. The addition of natural reinforcements decreased the density of composites. Microhardness of sample having 5 wt% rice husk ash increased by 15.08% over base composition. Maximum wear resistance was shown by sample with 5 wt% rice husk ash. Highest coefficient of friction was shown by sample with 3.75 wt% rice husk ash and 1.25 wt% carbonized eggshells. Wear loss varied directly with increasing load and sliding speeds for all composites, whereas coefficient of friction increased with increasing load and decreased with increasing sliding speed for all composites. Delamination and ploughing are dominant wear mechanisms at low speed whereas ploughing is the dominant wear mechanism at high speed as depicted by scanning electron microscopic images of worn surfaces. Composites with improved wear-resistant properties can be used for different tribological applications particularly in automotive industry.



中文翻译:

稻壳灰和碳化蛋壳增强AA7075复合材料的摩擦学特性

本文研究了稻壳灰和碳化蛋壳增强AA7075复合材料的干滑动摩擦磨损行为。通过搅拌铸造技术制造了具有不同重量百分比的稻壳灰和碳化蛋壳在 0-5 wt.% 范围内的复合材料。在摩擦学测试之前计算密度、孔隙率含量和显微硬度。摩擦磨损试验在室温下在针盘式摩擦计上进行。样品在不同负载(10-50 N)下以 1 m/s 的恒定速度和 1500 m 的恒定滑动距离进行测试。还在不同的滑动速度(3 和 5 m/s)和 30 N 的恒定法向载荷下对样品进行了测试。添加天然增强材料降低了复合材料的密度。含有 5 wt% 稻壳灰的样品显微硬度增加了 15。比基础成分高 08%。含有 5 wt% 稻壳灰的样品显示出最大的耐磨性。含有 3.75 wt% 稻壳灰和 1.25 wt% 碳化蛋壳的样品显示出最高的摩擦系数。所有复合材料的磨损损失直接随载荷和滑动速度的增加而变化,而摩擦系数随着载荷的增加而增加,所有复合材料的摩擦系数随着滑动速度的增加而减小。如磨损表面的扫描电子显微图像所示,分层和犁耕是低速下的主要磨损机制,而犁耕是高速下的主要磨损机制。具有改进耐磨性能的复合材料可用于不同的摩擦学应用,尤其是在汽车行业。含有 3.75 wt% 稻壳灰和 1.25 wt% 碳化蛋壳的样品显示出最高的摩擦系数。所有复合材料的磨损损失直接随载荷和滑动速度的增加而变化,而摩擦系数随着载荷的增加而增加,所有复合材料的摩擦系数随着滑动速度的增加而减小。如磨损表面的扫描电子显微图像所示,分层和犁耕是低速下的主要磨损机制,而犁耕是高速下的主要磨损机制。具有改进耐磨性能的复合材料可用于不同的摩擦学应用,尤其是在汽车行业。含有 3.75 wt% 稻壳灰和 1.25 wt% 碳化蛋壳的样品显示出最高的摩擦系数。所有复合材料的磨损损失直接随载荷和滑动速度的增加而变化,而摩擦系数随着载荷的增加而增加,所有复合材料的摩擦系数随着滑动速度的增加而减小。如磨损表面的扫描电子显微图像所示,分层和犁耕是低速下的主要磨损机制,而犁耕是高速下的主要磨损机制。具有改进耐磨性能的复合材料可用于不同的摩擦学应用,尤其是在汽车行业。而所有复合材料的摩擦系数随着载荷的增加而增加,随着滑动速度的增加而减小。如磨损表面的扫描电子显微图像所示,分层和犁耕是低速下的主要磨损机制,而犁耕是高速下的主要磨损机制。具有改进耐磨性能的复合材料可用于不同的摩擦学应用,尤其是在汽车行业。而所有复合材料的摩擦系数随着载荷的增加而增加,随着滑动速度的增加而减小。如磨损表面的扫描电子显微图像所示,分层和犁耕是低速下的主要磨损机制,而犁耕是高速下的主要磨损机制。具有改进耐磨性能的复合材料可用于不同的摩擦学应用,尤其是在汽车行业。

更新日期:2021-07-02
down
wechat
bug