当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cellular fluidics
Nature ( IF 64.8 ) Pub Date : 2021-06-30 , DOI: 10.1038/s41586-021-03603-2
Nikola A Dudukovic 1 , Erika J Fong 1 , Hawi B Gemeda 1 , Joshua R DeOtte 1 , Maira R Cerón 1 , Bryan D Moran 1 , Jonathan T Davis 1 , Sarah E Baker 1 , Eric B Duoss 1
Affiliation  

The natural world provides many examples of multiphase transport and reaction processes that have been optimized by evolution. These phenomena take place at multiple length and time scales and typically include gas–liquid–solid interfaces and capillary phenomena in porous media1,2. Many biological and living systems have evolved to optimize fluidic transport. However, living things are exceptionally complex and very difficult to replicate3,4,5, and human-made microfluidic devices (which are typically planar and enclosed) are highly limited for multiphase process engineering6,7,8. Here we introduce the concept of cellular fluidics: a platform of unit-cell-based, three-dimensional structures—enabled by emerging 3D printing methods9,10—for the deterministic control of multiphase flow, transport and reaction processes. We show that flow in these structures can be ‘programmed’ through architected design of cell type, size and relative density. We demonstrate gas–liquid transport processes such as transpiration and absorption, using evaporative cooling and CO2 capture as examples. We design and demonstrate preferential liquid and gas transport pathways in three-dimensional cellular fluidic devices with capillary-driven and actively pumped liquid flow, and present examples of selective metallization of pre-programmed patterns. Our results show that the design and fabrication of architected cellular materials, coupled with analytical and numerical predictions of steady-state and dynamic behaviour of multiphase interfaces, provide deterministic control of fluidic transport in three dimensions. Cellular fluidics may transform the design space for spatial and temporal control of multiphase transport and reaction processes.



中文翻译:

细胞流体学

自然界提供了许多通过进化优化的多相传输和反应过程的例子。这些现象发生在多个长度和时间尺度上,通常包括多孔介质中的气-液-固界面和毛细管现象1,2。许多生物和生命系统已经进化到优化流体传输。然而,生物非常复杂,很难复制3,4,5,而人造微流体装置(通常是平面和封闭的)在多相过程工程中受到很大限制6,7,8。在这里,我们介绍了细胞流体学的概念:基于单位细胞的三维结构平台——由新兴的 3D 打印方法实现9,10—用于多相流、传输和反应过程的确定性控制。我们表明,这些结构中的流动可以通过细胞类型、大小和相对密度的架构设计来“编程”。我们使用蒸发冷却和 CO 2演示气液传输过程,例如蒸腾和吸收捕捉为例子。我们在具有毛细管驱动和主动泵送液体流动的三维细胞流体装置中设计并展示了优先的液体和气体传输路径,并展示了预编程图案的选择性金属化示例。我们的结果表明,结构化蜂窝材料的设计和制造,加上对多相界面稳态和动态行为的分析和数值预测,可以在三个维度上提供流体传输的确定性控制。细胞流体学可以改变多相传输和反应过程的空间和时间控制的设计空间。

更新日期:2021-06-30
down
wechat
bug