当前位置: X-MOL 学术arXiv.cs.CG › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal Spanners for Unit Ball Graphs in Doubling Metrics
arXiv - CS - Computational Geometry Pub Date : 2021-06-29 , DOI: arxiv-2106.15234
David Eppstein, Hadi Khodabandeh

Resolving an open question from 2006, we prove the existence of light-weight bounded-degree spanners for unit ball graphs in the metrics of bounded doubling dimension, and we design a simple $\mathcal{O}(\log^*n)$-round distributed algorithm that given a unit ball graph $G$ with $n$ vertices and a positive constant $\epsilon < 1$ finds a $(1+\epsilon)$-spanner with constant bounds on its maximum degree and its lightness using only 2-hop neighborhood information. This immediately improves the algorithm of Damian, Pandit, and Pemmaraju which runs in $\mathcal{O}(\log^*n)$ rounds but has a $\mathcal{O}(\log \Delta)$ bound on its lightness, where $\Delta$ is the ratio of the length of the longest edge in $G$ to the length of the shortest edge. We further study the problem in the two dimensional Euclidean plane and we provide a construction with similar properties that has a constant average number of edge intersection per node. This is the first distributed low-intersection topology control algorithm to the best of our knowledge. Our distributed algorithms rely on the maximal independent set algorithm of Schneider and Wattenhofer that runs in $\mathcal{O}(\log^*n)$ rounds of communication. If a maximal independent set is known beforehand, our algorithms run in constant number of rounds.

中文翻译:

倍增度量中单位球图的最优 Spanner

解决了 2006 年的一个悬而未决的问题,我们证明了单位球图的轻量级有界度扳手在有界加倍维度的度量中的存在,并且我们设计了一个简单的 $\mathcal{O}(\log^*n)$ -round 分布式算法,给定一个单位球图 $G$ 和 $n$ 个顶点和一个正常数 $\epsilon < 1$ 找到一个 $(1+\epsilon)$-spanner,它的最大度数和亮度有恒定的界限仅使用 2 跳邻域信息。这立即改进了 Damian、Pandit 和 Pemmaraju 的算法,这些算法运行在 $\mathcal{O}(\log^*n)$ 轮中,但在其亮度上有一个 $\mathcal{O}(\log \Delta)$ 限制,其中 $\Delta$ 是 $G$ 中最长边的长度与最短边的长度之比。我们进一步研究了二维欧几里得平面中的问题,并提供了一种具有相似属性的构造,该构造具有每个节点的恒定平均边交叉数。据我们所知,这是第一个分布式低交点拓扑控制算法。我们的分布式算法依赖于 Schneider 和 Wattenhofer 的最大独立集算法,该算法在 $\mathcal{O}(\log^*n)$ 轮通信中运行。如果事先知道最大独立集,我们的算法以恒定的轮数运行。我们的分布式算法依赖于 Schneider 和 Wattenhofer 的最大独立集算法,该算法在 $\mathcal{O}(\log^*n)$ 轮通信中运行。如果事先知道最大独立集,我们的算法以恒定的轮数运行。我们的分布式算法依赖于 Schneider 和 Wattenhofer 的最大独立集算法,该算法在 $\mathcal{O}(\log^*n)$ 轮通信中运行。如果事先知道最大独立集,我们的算法以恒定的轮数运行。
更新日期:2021-06-30
down
wechat
bug