当前位置: X-MOL 学术J. Geod. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The CODE ambiguity-fixed clock and phase bias analysis products: generation, properties, and performance
Journal of Geodesy ( IF 4.4 ) Pub Date : 2021-06-28 , DOI: 10.1007/s00190-021-01521-9
S. Schaer , A. Villiger , D. Arnold , R. Dach , L. Prange , A. Jäggi

The generation and use of GNSS analysis products that allow—particularly for the needs of single-receiver applications—precise point positioning with ambiguity resolution (PPP-AR) are becoming more and more popular. A general uncertainty concerns the question on how the necessary phase bias information should be provided to the PPP-AR user. Until now, each AR-enabling clock/bias representation method had its own practice to provide the necessary bias information. We have generalized the observable-specific signal bias (OSB) representation, as introduced in Villiger (J Geod 93:1487–1500, 2019) originally exclusively for pseudorange measurements, to carrier phase measurements. The existing common clock (CC) approach has been extended in a way that OSBs allowing for flexible signal and frequency handling between multiple GNSS become possible. Advantages of the proposed OSB-based PPP-AR approach are: GNSS biases can be provided in a consistent way for phase and code measurements and it is capable of multi-GNSS and suitable for standardization. This new, extended PPP-AR approach has been implemented by the Center for Orbit Determination in Europe (CODE). CODE clock products that adhere to the integer-cycle property have been submitted to the International GNSS Service (IGS) since mid of 2018 for three analysis lines: Rapid, Final, and MGEX (Multi-GNSS Extension). Ambiguity fixing is performed not only for GPS but also for Galileo. The integer-cycle property of between-satellite clock differences is of fundamental importance when comparing satellite clock estimates among various analysis lines, or at day boundaries. Both kinds of comparisons could be exploited at a very high level of consistency. Any retrieved comparison essentially indicated a standard deviation for between-satellite clocks from CODE of the order of 5 ps (1.5 mm in range). Finally, the integer-cycle property that may be recovered between the CODE Final clock and the accompanying bias product of consecutive daily sessions (using clock estimates additionally provided for the second midnight epoch) allows us to deduce GPS satellite clock and phase bias information that is consistent and continuous with respect to carrier phase observation data over two, three, or, in principle, yet more days. Phase-based clock densification from initially estimated integer-cycle-conform clock corrections at intervals of 300 s to 30 s (5 s in case of our Final clock product) is a matter of particular interest. Based on direct product comparisons and GRACE K-band ranging (KBR) data analysis, the quality of accordingly densified clock corrections could be confirmed to be on a level similar to that of “anchor” (300 s) clock corrections.



中文翻译:

CODE 模糊度固定时钟和相位偏置分析产品:生成、属性和性能

GNSS 分析产品的生成和使用——尤其是针​​对单接收器应用的需求——具有模糊度分辨率 (PPP-AR) 的精确点定位正变得越来越流行。一个普遍的不确定性涉及如何向 PPP-AR 用户提供必要的相位偏差信息的问题。到目前为止,每个启用 AR 的时钟/偏置表示方法都有自己的实践来提供必要的偏置信息。我们已经将最初专门用于伪距测量的 Villiger (J Geod 93:1487–1500, 2019) 中介绍的可观测特定信号偏差 (OSB) 表示推广到载波相位测量。现有的公共时钟 (CC) 方法已经扩展,使得 OSB 允许在多个 GNSS 之间进行灵活的信号和频率处理成为可能。所提出的基于 OSB 的 PPP-AR 方法的优点是: 可以以一致的方式为相位和代码测量提供 GNSS 偏差,并且它能够进行多 GNSS 并适合标准化。这种新的、扩展的 PPP-AR 方法已由欧洲轨道确定中心 (CODE) 实施。自 2018 年年中以来,符合整数周期特性的 CODE 时钟产品已提交给国际 GNSS 服务 (IGS),用于三个分析线:Rapid、Final 和 MGEX(Multi-GNSS Extension)。不仅对 GPS 还对伽利略执行歧义修复。在比较不同分析线之间或在日边界处的卫星时钟估计时,卫星间时钟差异的整数周期属性具有根本重要性。这两种比较都可以在非常高的一致性水平上加以利用。任何检索到的比较基本上都表明来自 CODE 的卫星间时钟的标准偏差为 5 ps(范围为 1.5 毫米)。最后,可以在 CODE Final 时钟和连续每日会话的伴随偏差乘积之间恢复的整数周期属性(使用为第二个午夜时期额外提供的时钟估计)使我们能够推断出 GPS 卫星时钟和相位偏差信息,即两、三天或原则上更多天的载波相位观测数据的一致性和连续性。以 300 秒到 30 秒(在我们的最终时钟产品的情况下为 5 秒)为间隔的初始估计整数周期一致性时钟校正的基于相位的时钟密集化是一个特别令人感兴趣的问题。

更新日期:2021-06-29
down
wechat
bug