当前位置: X-MOL 学术Journal of Baltic Science Education › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
THE WAYS THE THEORY OF PHYSICS EDUCATION CAN EVOLVE
Journal of Baltic Science Education ( IF 1.232 ) Pub Date : 2020-12-05 , DOI: 10.33225/jbse/20.19.860
Peter Demkanin 1
Affiliation  

Theory of physics education, as well as our Journal of Baltic Science Education, made a significant step over the last 20 years. Twenty years ago, formal physics education had a one-and-a-half century of development; JBSE was just an idea to be turned into the 1st issue in 2002. In this article, I would like to mention some of the great steps physics education made in the last decades and some open questions for the nearest future. I would like to apologize to the readers from the field of biology, chemistry or primary science education unlike in my previous articles in this Journal (Demkanin, 2013; Demkanin, 2018), here I focus on physics education. Some retrospective on physics and science education was done by Jong (2007); Yun (2020), and Girwidz et al. (2019). It is possible to divide the main research results of physics education from the last decades to three clusters. The main result cluster (Cluster A) can be grouped about the idea: in upper-secondary school, we could profitably think about a problem for weeks. Cluster B is related to the profitable use of digital technologies by students, and Cluster C is associated with the methodology of research in physics education. Let us try to present this idea on a concrete example. One of the activities, I regularly use with my university students – future physics teachers is a complex activity with a filament lamp. As a result of physics education research (Cluster A), we know, that complex activities can be profitably used in physics education (diSessa, 1988; diSessa, 2017). In the last century, we usually used a filament lamp for presenting a non-linear Voltage-Current characteristic, as in Figure 1 bottom left. Students know that Ohms law usually applies to a metal wire. The filament of a lamp is a metal wire, so assumption about linear Current-Voltage dependence is relevant. The dependence of resistivity on temperature is also a standard high school topic, so we usually address the topic with our students. Inspired by ideas of Cluster A, we decided to go further, to the topic of black body radiation. The assumption that heat from the filament is transferred to the environment in the form of radiation could be justified at the secondary school level. Of course, from the measurement of the Current-Voltage characteristic of a bulb to inquiry of the radiation of a bulb, is a long way. Which complex problems are optimal for physics education? Which competencies are developed? Which and at what age level, by which methods? What are our goals, and why? What are other questions reasonable to solve in our research in Cluster A? Development of the previous ideas about the filament lamp are firmly related to the results from Cluster B – use of digital technologies in physics education. Students can find information relevant to the radiation of hot object in their digital sources of information, but let us focus here not on general, but on subject-specific competences (Becker at al., 2020). Students can collect data of voltage and current for a bulb by voltage and current sensors. Having the data in digital form is a great advantage in contrast to getting the data with universal Voltmeter and Ammeter, filling a table in an exercise book. Having a proper general plan of the data processing, the student can easily calculate power, resistance and even the temperature of the filament bulb. Having the hypothesis, that the filament transfers all the power to the surrounding by radiation (not by heat convention, negligibly by heat conduction), the student can use the formula for the rate, at which a hot object radiates, within the process of hypothesis formulation. The rate should be proportional to the fourth power of temperature. The coefficient of proportionality includes emissivity and surface area of the object. To verify the hypothesis, Students plot a graph of power vs the fourth power of temperature as in Figure 1 top left.

中文翻译:

物理教育理论的发展方式

物理教育理论以及我们的波罗的海科学教育杂志在过去 20 年中迈出了重要的一步。二十年前,正规物理教育有一个半世纪的发展;JBSE 只是一个想法,在 2002 年成为第 1 期。在这篇文章中,我想提及物理教育在过去几十年中取得的一些重大进展,以及最近的一些未解决的问题。与我之前在本期刊上发表的文章(Demkanin,2013 年;Demkanin,2018 年)不同,我想向生物学、化学或初级科学教育领域的读者道歉,这里我专注于物理教育。Jong (2007) 对物理和科学教育进行了一些回顾;Yun (2020) 和 Girwidz 等人。(2019)。可以将过去几十年物理教育的主要研究成果划分为三个集群。主要结果集群(集群 A)可以围绕这个想法进行分组:在高中阶段,我们可以用数周的时间来思考一个问题。集群 B 与学生使用数字技术的盈利性相关,集群 C 与物理教育研究方法相关。让我们试着用一个具体的例子来表达这个想法。其中一项活动,我经常和我的大学生一起使用——未来的物理老师是一个带灯丝灯的复杂活动。作为物理教育研究(集群 A)的结果,我们知道,复杂的活动可以在物理教育中获利(diSessa,1988 年;disessa,2017 年)。在上个世纪,我们通常使用白炽灯来呈现非线性电压-电流特性,如图 1 左下角所示。学生知道欧姆定律通常适用于金属线。灯的灯丝是金属线,因此线性电流电压相关性的假设是相关的。电阻率对温度的依赖性也是一个标准的高中话题,所以我们通常和我们的学生一起讨论这个话题。受到集群 A 想法的启发,我们决定更进一步,讨论黑体辐射的话题。来自灯丝的热量以辐射的形式传递到环境中的假设在中学阶段是合理的。当然,从测量灯泡的电流-电压特性到查询灯泡的辐射,还有很长的路要走。哪些复杂问题最适合物理教育?培养哪些能力?在哪个年龄段,通过哪些方法?我们的目标是什么,为什么?在我们对集群 A 的研究中,还有哪些合理的问题需要解决?先前关于灯丝灯的想法的发展与集群 B 的结果紧密相关 - 在物理教育中使用数字技术。学生可以在他们的数字信息源中找到与热物体辐射相关的信息,但让我们在这里不关注一般性,而是关注特定学科的能力(贝克尔等人,2020 年)。学生可以通过电压和电流传感器收集灯泡的电压和电流数据。与使用通用电压表和电流表获取数据相比,以数字形式获取数据是一个很大的优势,在练习本中填满一张桌子。有了适当的数据处理总体计划,学生可以轻松计算灯丝灯泡的功率、电阻甚至温度。假设灯丝通过辐射(不是通过热约定,通过热传导可以忽略不计)将所有能量传输到周围,学生可以在假设过程中使用热物体辐射速率的公式公式。该速率应与温度的四次方成正比。比例系数包括物体的发射率和表面积。为了验证假设,学生绘制了功率与温度的四次幂的关系图,如图 1 左上角所示。电阻甚至灯丝灯泡的温度。假设灯丝通过辐射(不是通过热约定,通过热传导可以忽略不计)将所有能量传输到周围,学生可以在假设过程中使用热物体辐射速率的公式公式。该速率应与温度的四次方成正比。比例系数包括物体的发射率和表面积。为了验证假设,学生绘制了功率与温度的四次幂的关系图,如图 1 左上角所示。电阻甚至灯丝灯泡的温度。假设灯丝通过辐射(不是通过热约定,通过热传导可以忽略不计)将所有能量传输到周围环境,学生可以在假设过程中使用热物体辐射速率的公式公式。该速率应与温度的四次方成正比。比例系数包括物体的发射率和表面积。为了验证假设,学生绘制了功率与温度的四次幂的关系图,如图 1 左上角所示。在假设制定过程中,热物体辐射的温度。该速率应与温度的四次方成正比。比例系数包括物体的发射率和表面积。为了验证假设,学生绘制了功率与温度的四次幂的关系图,如图 1 左上角所示。在假设制定过程中,热物体辐射的温度。该速率应与温度的四次方成正比。比例系数包括物体的发射率和表面积。为了验证假设,学生绘制了功率与温度的四次幂的关系图,如图 1 左上角所示。
更新日期:2020-12-05
down
wechat
bug