当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of flow momentum enhancement using an artificial external source on shock wave strength, a CFD study
Acta Astronautica ( IF 3.5 ) Pub Date : 2021-06-24 , DOI: 10.1016/j.actaastro.2021.06.029
Hadi Bagheri , Seyed Ali Agha Mirjalily , Seyed Amir Abbas Oloomi , Mohammad Reza Salimpour

This study evaluated the effects of the adding of flow momentum using artificial external source on the controlling of oblique shock wave of a supersonic flow in a three dimensional duct with low-aspect-ratio (based on experimental data) through a numerical investigation by employing an OpenFoam extended solver. The oblique shock occurred due to a 20° compression ramp which placed on the top of the low-aspect-ratio duct. The flow characteristics were consistent with the published data, suggesting that the numerical methodology successfully resolved the interaction between the shock-waves and flow boundary-layer. To investigate the effect of momentum adding, based on literature, three different cases with various forces exerted on the upper and lower walls of the duct were considered. The results showed that momentum adding led to a decrement in the separation region and shock strength. Moreover, adding the momentum sources on the lower wall of the duct suppressed the lambda shock that happened by the collision of separated and incident shocks and Mach stem. However, by applying the momentum source on the upper wall (upstream of the compression ramp) had more effects on the interaction between shock wave and boundary layer, as compared to the lower wall. Therefore, based on the obtained results, to achieve the best performance of momentum source, it must apply at the critical point with the greatest effect on discontinuities in the flow structure.



中文翻译:

使用人工外部源增强流动动量对冲击波强度的影响,CFD 研究

本研究通过数值研究评估了使用人工外源增加流动动量对低纵横比三维管道中超音速流斜激波控制的影响(基于实验数据)。 OpenFoam 扩展求解器。由于放置在低纵横比管道顶部的 20° 压缩斜坡,发生了斜激波。流动特性与公布的数据一致,表明数值方法成功地解决了冲击波和流动边界层之间的相互作用。为了研究动量增加的影响,根据文献,考虑了在管道的上壁和下壁上施加不同力的三种不同情况。结果表明,动量增加导致分离区和冲击强度下降。此外,在管道下壁增加动量源,抑制了分离和入射激波与马赫杆碰撞产生的λ激波。然而,与下壁相比,通过在上壁(压缩斜坡的上游)上应用动量源,对激波和边界层之间的相互作用有更大的影响。因此,基于得到的结果,为了获得最佳的动量源性能,它必须应用于对流动结构中的不连续性影响最大的临界点。在管道下壁添加动量源抑制了由分离的和入射的激波与马赫杆碰撞而发生的λ激波。然而,与下壁相比,通过在上壁(压缩斜坡的上游)上应用动量源,对激波和边界层之间的相互作用有更大的影响。因此,基于得到的结果,为了获得最佳的动量源性能,它必须应用于对流动结构中的不连续性影响最大的临界点。在管道下壁上添加动量源抑制了由分离的和入射的激波与马赫杆碰撞而发生的λ激波。然而,与下壁相比,通过在上壁(压缩斜坡的上游)上应用动量源,对激波和边界层之间的相互作用有更大的影响。因此,基于得到的结果,为了获得最佳的动量源性能,它必须应用于对流动结构中的不连续性影响最大的临界点。

更新日期:2021-06-29
down
wechat
bug