当前位置: X-MOL 学术Phys. Status Solidi A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Resonant Cavity–Enhanced Photodiodes for Spectroscopy of C?H Bonds
Physica Status Solidi (A) - Applications and Materials Science ( IF 2 ) Pub Date : 2021-06-23 , DOI: 10.1002/pssa.202100056
Andrew Bainbridge 1 , Adam P. Craig 1 , Furat Al-Saymari 1, 2 , Anthony Krier 1 , Andrew R. J. Marshall 1
Affiliation  

Resonant cavity-enhanced photodiodes targeted within the spectral region of absorption by CH bonds are demonstrated. The 3.0 3.3 μ m region of the infrared spectrum contains many substances that are useful to measure spectroscopically. However, the measurement of individual substances requires a high spectral specificity, that is achieved by the resonant cavity photodiodes with spectral response widths of < 40 nm . Two material systems are investigated for detection at this wavelength range—an InAs absorber on an InAs substrate and an InAsSb absorber lattice-matched to a GaSb substrate. The resonance wavelength of the InAs-based device responds at 3.3 μ m , closely tuned to an absorption peak of methane to allow precise sensing of this gas. At 300 K a quantum efficiency of 52 % is achieved, with a specific detectivity of 2.5 × 10 10 cm Hz / W . The InAsSb-based device is sensitive at 3.7 μ m , but the structure could be tuned to the methane absorption peak. Devices could be simply created to target other substances in the C−H absorption region by altering the layer thicknesses in the structure. Both structures can be used for spectrally specific gas sensing in this region of the infrared.

中文翻译:

用于 C?H 键光谱的谐振腔增强型光电二极管

演示了以 C H 键吸收的光谱区域内为目标的谐振腔增强型光电二极管。这 3.0 —— 3.3 μ 红外光谱区域包含许多可用于光谱测量的物质。然而,单个物质的测量需要高光谱特异性,这是通过具有光谱响应宽度的谐振腔光电二极管实现的 < 40 纳米 . 研究了两种材料系统用于在该波长范围内进行检测——InAs 衬底上的 InAs 吸收剂和与 GaSb 衬底晶格匹配的 InAsSb 吸收剂。InAs 基器件的共振波长响应于 3.3 μ ,密切调整到甲烷的吸收峰,以实现对这种气体的精确感应。在 300 量子效率 52 % 达到了,具有特定的检测能力 2.5 × 10 10 厘米 赫兹 / . 基于 InAsSb 的器件在 3.7 μ ,但结构可以调整到甲烷吸收峰。通过改变结构中的层厚度,可以简单地创建器件以针对 CH 吸收区域中的其他物质。两种结构都可用于该红外区域的光谱特定气体传感。
更新日期:2021-06-23
down
wechat
bug