当前位置: X-MOL 学术Water Air Soil Pollut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical Probing of H2O2 Using TiO2-ZrO2-HfO2 Modified Glassy Carbon Electrode: A Promoted Sacrificial Behavior of Hf4+ ions
Water, Air, & Soil Pollution ( IF 2.9 ) Pub Date : 2021-06-21 , DOI: 10.1007/s11270-021-05190-4
Akshay Krishnakumar , Parthasarathy Srinivasan , Ganesh Kumar Mani , Rio Kita , Kunio Okimura , John Bosco Balaguru Rayappan , Kazuyoshi Tsuchiya

In recent years, there is a massive demand for the development of high-performance sensing technologies to curtail the effect of environmental pollutions. One such primary ecological concern is water pollution, where the major risk factor is associated with the concentrations of the chemical residues (hydrogen peroxide [H2O2]) in drinking water. Keeping this in view, we have demonstrated a non-enzymatic electrochemical probing of H2O2 in water employing microwave-assisted TiO2-ZrO2-HfO2 ternary nanocomposite for the first time. Structural analysis revealed the formation of monoclinic phases of ZrO2 and HfO2 along with anatase phased TiO2. Dynamic sensing characteristics of the TiO2-ZrO2-HfO2 nanocomposite were studied by varying the concentration of H2O2 from 1 to 19 µM where the sensor showed linearity up to 9 µM. The LOD and LOQ of the sensor were found to be 0.32 and 1.06 µM respectively along with the sensitivity of 6.71 \(\mu \mathrm{A}\bullet\upmu {\mathrm{M}}^{-1}\). The dominant signal change of Zr4+ ions in the TiO2-ZrO2-HfO2 nanointerface upon interacting with H2O2 has significantly inhibited the Hf4+ ions from taking part in the redox reaction, which refers to the sacrificial behavior. The reaction hierarchy was observed as ZrO2 (Eo = − 1.23 V) > TiO2 (Eo = − 1.15 V [suppressed peak]) > HfO2 (no redox peaks observed sacrificial). The real-time recovery study was carried out using the tap water, field water, and urban river water samples with repeatable and reproducible characteristics. Thus, our study provokes a new dimension in exploring many ternary nanointerfaces in the near future for the electrochemical sensing of different analytes.

Graphical abstract



中文翻译:

使用 TiO2-ZrO2-HfO2 改性玻碳电极电化学探测 H2O2:促进 Hf4+ 离子的牺牲行为

近年来,人们对开发高性能传感技术以减少环境污染的影响有着巨大的需求。其中一个主要的生态问题是水污染,其中主要的风险因素与饮用水中化学残留物(过氧化氢 [H 2 O 2 ])的浓度有关。考虑到这一点,我们首次展示了使用微波辅助的 TiO 2 -ZrO 2 -HfO 2三元纳米复合材料对水中的 H 2 O 2进行非酶促电化学探测。结构分析揭示了 ZrO 2和 HfO 2单斜相的形成以及锐钛矿相的TiO 2。TiO 2 -ZrO 2 -HfO 2纳米复合材料的动态传感特性通过改变H 2 O 2的浓度从1 到19 µM 进行研究,其中传感器显示出高达9 µM 的线性。发现传感器的 LOD 和 LOQ 分别为 0.32 和 1.06 µM,灵敏度为 6.71 \(\mu \mathrm{A}\bullet\upmu {\mathrm{M}}^{-1}\)。TiO 2 -ZrO 2 -HfO 2纳米界面中Zr 4+离子与H 2 O 2相互作用的主要信号变化显着抑制了 Hf 4+离子参与氧化还原反应,这是指牺牲行为。观察到反应层次为 ZrO 2 ( E o  = - 1.23 V) > TiO 2 ( E o  = - 1.15 V [抑制峰]) > HfO 2 (没有观察到牺牲的氧化还原峰)。使用具有可重复性和再现性特征的自来水、田间水和城市河水样品进行了实时回收率研究。因此,我们的研究为在不久的将来探索用于不同分析物电化学传感的许多三元纳米界面开辟了新的维度。

图形概要

更新日期:2021-06-22
down
wechat
bug