当前位置: X-MOL 学术Geofluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Expansion Velocity Model of Steam-Assisted Gravity Drainage considering Thermal Convection
Geofluids ( IF 1.7 ) Pub Date : 2021-06-22 , DOI: 10.1155/2021/9925410
Dian-Fa Du 1 , Yao-Zu Zhang 1 , Li-Na Zhang 2 , Meng-Ran Xu 1 , Xin Liu 2
Affiliation  

Steam-assisted gravity drainage (SAGD) is an important method used in the development of heavy oil. A heat transfer model in the SAGD production process is established based on the heat transfer effect caused by the temperature difference at the front edge of the steam chamber and the heat convection effect caused by the pressure difference. The observation well temperature method is used in this model to calculate the horizontal expansion speed of the steam chamber. In this manner, an expansion speed model considering heat convection and heat conduction is established for a steam chamber with a steam-assisted gravity drainage system. By comparing this with the production data extracted from the Fengcheng Oilfield target block, it is verified that the model can be effectively applied for actual field development. Simultaneously, by using the derived model, the temperature distribution at the edge of the steam chamber and production forecast can be predicted. Sensitivity analysis of the expansion rate of the steam chamber demonstrates that the larger the thermal conductivity, the faster is the steam chamber horizontal expansion speed, and the two are positively correlated; the larger the reservoir heat capacity, the slower is the steam chamber horizontal expansion speed. A larger heat capacity of the convective liquid indicates that there are more water components in the convective liquid, the viscosity of the convective liquid is low, and the expansion speed of the steam chamber increases accordingly. This research closely integrates theory with actual field production and provides theoretical support for the development of heavy oil reservoirs.

中文翻译:

考虑热对流的蒸汽辅助重力排水膨胀速度模型

蒸汽辅助重力泄油(SAGD)是稠油开发的重要方法。基于蒸汽室前缘温差引起的传热效应和压差引起的热对流效应,建立了SAGD生产过程中的传热模型。该模型采用观测井温法计算蒸汽室的水平膨胀速度。通过这种方式,建立了考虑热对流和热传导的蒸汽辅助重力排水系统蒸汽室的膨胀速度模型。通过与从丰城油田目标区块提取的生产数据进行对比,验证了该模型可以有效应用于实际油田开发。同时地,利用导出的模型,可以预测蒸汽室边缘的温度分布和产量预测。蒸汽室膨胀率的敏感性分析表明,导热系数越大,蒸汽室水平膨胀速度越快,两者呈正相关;储层热容量越大,蒸汽室水平膨胀速度越慢。对流液体的热容越大,说明对流液体中的水成分越多,对流液体的黏度越低,蒸汽室的膨胀速度也相应增加。该研究将理论与现场生产实际紧密结合,为稠油油藏的开发提供理论支持。可以预测蒸汽室边缘的温度分布和产量预测。蒸汽室膨胀率的敏感性分析表明,导热系数越大,蒸汽室水平膨胀速度越快,两者呈正相关;储层热容量越大,蒸汽室水平膨胀速度越慢。对流液体的热容越大,说明对流液体中的水成分越多,对流液体的黏度越低,蒸汽室的膨胀速度也相应增加。该研究将理论与现场生产实际紧密结合,为稠油油藏的开发提供理论支持。可以预测蒸汽室边缘的温度分布和产量预测。蒸汽室膨胀率的敏感性分析表明,导热系数越大,蒸汽室水平膨胀速度越快,两者呈正相关;储层热容量越大,蒸汽室水平膨胀速度越慢。对流液体的热容越大,说明对流液体中的水成分越多,对流液体的黏度越低,蒸汽室的膨胀速度也相应增加。该研究将理论与现场生产实际紧密结合,为稠油油藏的开发提供理论支持。
更新日期:2021-06-22
down
wechat
bug