当前位置: X-MOL 学术Acta. Math. Sin. Engl. Ser. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Automorphisms of a Class of Finite p-groups with a Cyclic Derived Subgroup
Acta Mathematica Sinica, English Series ( IF 0.7 ) Pub Date : 2021-06-15 , DOI: 10.1007/s10114-021-9509-3
Yu Lei Wang , He Guo Liu

Let p be an odd prime, and let k be a nonzero nature number. Suppose that nonabelian group G is a central extension as follows

$$1 \to G\prime \to G \to {{\mathbb{Z}}_{{p^k}}} \times \cdots \times {{\mathbb{Z}}_{{p^k}}},$$

where G′ ≅ ℤpk, and ζG/G′ is a direct factor of G/G′.Then G is a central product of an extraspecial pk-group E and ζG. Let ∣E∣ = p(2n+1)k and ∣ζG∣ = p(m+1)k. Suppose that the exponents of E and ζG are pk+l and pk+r, respectively, where 0 ≤ l, rk. Let AutGG be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G′, let AutG/ζG,ζGG be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the center ζG, and let AutG/ζG,ζG/GG be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on ζG/G′. Then (i) The group extension 1 → AutGG → Aut G → Aut G′ → 1 is split. (ii) AutGG/AutG/ζG,ζGGG1 × G2, where \({\rm{Sp}}(2n - 2,{{\bf{Z}}_{{p^k}}})\ltimes H \le {G_1} \le {\rm{Sp}}(2n,{{\bf{Z}}_{{p^k}}})\), H is an extraspecial pk -group of order p(2n−1)k and \(({\rm{GL}}(m - 1,{{\bf{Z}}_{{p^k}}})\ltimes \mathbb{Z}_{{p^k}}^{(m - 1)})\ltimes \mathbb{Z}_{{p^k}}^{(m)} \le {G_2} \le {\rm{GL}}(m,{{\bf{Z}}_{{p^k}}})\ltimes \mathbb{Z}_{{p^k}}^{(m)}\). In particular, \({G_1} = {\rm{Sp}}(2n - 2,{{\bf{Z}}_{{p^k}}})\ltimes H\) if and only if l = k and r = 0; \({G_1} = {\rm{Sp}}(2n,{{\bf{Z}}_{{p^k}}})\) if and only if lr; \({G_2} = ({\rm{GL}}(m - 1,{{\bf{Z}}_{{p^k}}})\ltimes {\mathbb{Z}}_{{p^k}}^{(m - 1)})\ltimes {\mathbb{Z}}_{{p^k}}^{(m)}\) if and only if r = k; \({G_2} = {\rm{GL}}(m,{{\bf{Z}}_{{p^k}}})\ltimes {\mathbb{Z}}_{{p^k}}^{(m)}\) if and only if r = 0. (iii) AutGG/AutG/ζG,ζG/GGG1 × G3, where G1 is defined in (ii); \({\rm{GL}}(m - 1,{{\bf{Z}}_{{p^k}}})\ltimes {\mathbb{Z}}_{{p^k}}^{(m - 1)} \le {G_3} \le {\rm{GL}}(m,{{\bf{Z}}_{{p^k}}})\). In particular, \({G_3}{\rm{= GL}}(m - 1,{{\bf{Z}}_{{p^k}}})\ltimes {\mathbb{Z}}_{{p^k}}^{(m - 1)}\) if and only if r = k; \({G_3} = {\rm{GL}}(m,{{\bf{Z}}_{{p^k}}})\) if and only if r = 0. (iv) \({\rm{Au}}{{\rm{t}}_{G/\zeta G,\zeta G/G\prime}}G \cong {\rm{Au}}{{\rm{t}}_{G/\zeta G,\zeta G}}G\rtimes {\mathbb{Z}}_{{p^k}}^{(m)}\). If m = 0, then \({\rm{Au}}{{\rm{t}}_{G/\zeta G,\zeta G}}G = {\rm{Inn}}\,G \cong \mathbb{Z}_{{p^k}}^{(2n)}\); If m > 0, then \({\rm{Au}}{{\rm{t}}_{G/\zeta G,\zeta G}}G \cong \mathbb{Z}_{{p^k}}^{(2nm)} \times \mathbb{Z}_{{p^{k - r}}}^{(2n)}\), and \({\rm{Au}}{{\rm{t}}_{G/\zeta G,\zeta G}}G/{\rm{Inn}}\,G \cong \mathbb{Z}_{{p^k}}^{(2n(m - 1))} \times \mathbb{Z}_{{p^{k - r}}}^{(2n)}\).



中文翻译:

一类具有循环派生子群的有限p群的自同构

p为奇素数,k为非零自然数。假设非贝尔群G是中心扩展如下

$$1 \to G\prime \to G \to {{\mathbb{Z}}}_{{p^k}}} \times \cdots \times {{\mathbb{Z}}}_{{p^k} }},$$

其中G ′ ≅ ℤ p k,且ζG/G ′ 是G / G ′的直接因数。那么G是一个特异p kEζG的中心积。设 ∣ E ∣ = p (2 n +1) k和 ∣ ζG ∣ = p ( m +1) k。假设EζG的指数分别p k+lp k+r,其中 0 ≤l, rk。让AUT ģ ' G ^是AUT的正常子组G ^由AUT的所有元素的ģ其中所导出的子组平凡作用ģ ',让AUT G /ζG,ζG ģ是AUT的正常子组G ^包括所有中央构的ģ这也平凡作用于中心ζG,并让AUT G /ζG,ζG/ G ' G ^是AUT的正常子组G ^包括所有中央构的ģ也平凡作用于ζG/ G'. 然后 (i) 群扩展 1 → Aut GG → Aut G → Aut G ′ → 1 被分裂。(ii) Aut GG /Aut G/ζG,ζG GG 1 × G 2,其中\({\rm{Sp}}(2n - 2,{{\bf{Z}}_{{p^ k}}})\ltimes H \le {G_1} \le {\rm{Sp}}(2n,{{\bf{Z}}}_{{p^k}}})\)H是一个额外的p ķ顺序的-group p (2 ñ -1)ķ\(({\rm{GL}}(m - 1,{{\bf{Z}}_{{p^k}}})\ltimes \mathbb{Z}_{{p^k}}^{ (m - 1)})\ltimes \mathbb{Z}_{{p^k}}^{(m)} \le {G_2} \le {\rm{GL}}(m,{{\bf{ Z}}_{{p^k}}})\ltimes \mathbb{Z}_{{p^k}}^{(m)}\)。特别地,\({G_1} = {\rm{Sp}}(2n - 2,{{\bf{Z}}}_{{p^k}}})\ltimes H\)当且仅当l = kr = 0; \({G_1} = {\rm{Sp}}(2n,{{\bf{Z}}_{{p^k}}})\)当且仅当lr\({G_2} = ({\rm{GL}}(m - 1,{{\bf{Z}}_{{p^k}}})\ltimes {\mathbb{Z}}_{{p ^k}}^{(m - 1)})\ltimes {\mathbb{Z}}_{{p^k}}^{(m)}\)当且仅当r = k\({G_2} = {\rm{GL}}(m,{{\bf{Z}}_{{p^k}}})\ltimes {\mathbb{Z}}_{{p^k} }^{(m)}\)当且仅当r = 0。 (iii) Aut GG/ Aut G/ζG,ζG/GGG 1 × G 3,其中G 1在 (ii) 中定义); \({\rm{GL}}(m - 1,{{\bf{Z}}_{{p^k}}})\ltimes {\mathbb{Z}}_{{p^k}}^ {(m - 1)} \le {G_3} \le {\rm{GL}}(m,{{\bf{Z}}_{{p^k}}})\)。特别地,\({G_3}{\rm{= GL}}(m - 1,{{\bf{Z}}_{{p^k}}})\ltimes {\mathbb{Z}}_{ {p^k}}^{(m - 1)}\)当且仅当r = k ; \({G_3} = {\rm{GL}}(m,{{\bf{Z}}_{{p^k}}})\)当且仅当r = 0。 (iv) \({\rm{Au}}{{\rm{t}}_{G/\zeta G,\zeta G/G\prime}}G \cong {\ rm{Au}}{{\rm{t}}_{G/\zeta G,\zeta G}}G\rtimes {\mathbb{Z}}_{{p^k}}^{(m)} \)。如果m = 0,则\({\rm{Au}}{{\rm{t}}_{G/\zeta G,\zeta G}}G = {\rm{Inn}}\,G \cong \mathbb{Z}_{{p^k}}^{(2n)}\) ; 如果m > 0,则\({\rm{Au}}{{\rm{t}}_{G/\zeta G,\zeta G}}G \cong \mathbb{Z}_{{p^k }}^{(2nm)} \times \mathbb{Z}_{{p^{k - r}}}^{(2n)}\)\({\rm{Au}}{{\rm {t}}_{G/\zeta G,\zeta G}}G/{\rm{Inn}}\,G \cong \mathbb{Z}_{{p^k}}^{(2n(m - 1))} \times \mathbb{Z}_{{p^{k - r}}}^{(2n)}\)

更新日期:2021-06-21
down
wechat
bug