Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fracture toughness of one- and two-dimensional nanoreinforced cement via scratch testing
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences ( IF 5 ) Pub Date : 2021-06-21 , DOI: 10.1098/rsta.2020.0288
Ange-Therese Akono 1
Affiliation  

Cement is the most widely consumed material globally, with the cement industry accounting for 8% of human-caused greenhouse gas emissions. Aiming for cement composites with a reduced carbon footprint, this study investigates the potential of nanomaterials to improve mechanical characteristics. An important question is to increase the fraction of carbon-based nanomaterials within cement matrices while controlling the microstructure and enhancing the mechanical performance. Specifically, this study investigates the fracture response of Portland cement reinforced with one- and two-dimensional carbon-based nanomaterials, such as carbon nanofibres, multiwalled carbon nanotubes, helical carbon nanotubes and graphene oxide nanoplatelets. Novel processing routes are shown to incorporate 0.1–0.5 wt% of nanomaterials into cement using a quadratic distribution of ultrasonic energy. Scratch testing is used to probe the fracture response by pushing a sphero-conical probe against the surface of the material under a linearly increasing vertical force. Fracture toughness is then computed using a nonlinear fracture mechanics model. Nanomaterials are shown to bridge nanoscale air voids, leading to pore refinement, and a decrease in the porosity and the water absorption. An improvement in fracture toughness is observed in cement nanocomposites, with a positive correlation between the fracture toughness and the mass fraction of nanofiller for graphene-reinforced cement. Moreover, for graphene-reinforced cement, the fracture toughness values are in the range of 0.701 to 0.717 MPam. Thus, this study illustrates the potential of nanomaterials to toughen cement while improving the microstructure and water resistance properties.

This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.



中文翻译:

一维和二维纳米增强水泥的断裂韧性通过划痕测试

水泥是全球消费最广泛的材料,水泥行业占人为温室气体排放量的 8%。针对减少碳足迹的水泥复合材料,本研究调查了纳米材料改善机械特性的潜力。一个重要的问题是增加水泥基体中碳基纳米材料的比例,同时控制微观结构并提高机械性能。具体而言,本研究研究了用一维和二维碳基纳米材料(如碳纳米纤维、多壁碳纳米管、螺旋碳纳米管和氧化石墨烯纳米片)增强的波特兰水泥的断裂响应。新的加工路线显示包含 0.1-0。使用超声波能量的二次分布将 5 wt% 的纳米材料加入水泥中。划痕测试用于通过在线性增加的垂直力下将球形锥形探针推向材料表面来探测断裂响应。然后使用非线性断裂力学模型计算断裂韧性。纳米材料被证明可以桥接纳米级空气空隙,导致孔隙细化,并降低孔隙率和吸水率。在水泥纳米复合材料中观察到断裂韧性的提高,断裂韧性与石墨烯增强水泥的纳米填料的质量分数之间存在正相关关系。此外,对于石墨烯增强水泥,断裂韧性值在 0.701 至 0.717 MPa 范围内 划痕测试用于通过在线性增加的垂直力下将球形锥形探针推向材料表面来探测断裂响应。然后使用非线性断裂力学模型计算断裂韧性。纳米材料被证明可以桥接纳米级空气空隙,导致孔隙细化,并降低孔隙率和吸水率。在水泥纳米复合材料中观察到断裂韧性的提高,断裂韧性与石墨烯增强水泥的纳米填料的质量分数之间存在正相关关系。此外,对于石墨烯增强水泥,断裂韧性值在 0.701 至 0.717 MPa 范围内 划痕测试用于通过在线性增加的垂直力下将球形锥形探针推向材料表面来探测断裂响应。然后使用非线性断裂力学模型计算断裂韧性。纳米材料被证明可以桥接纳米级空气空隙,导致孔隙细化,并降低孔隙率和吸水率。在水泥纳米复合材料中观察到断裂韧性的提高,断裂韧性与石墨烯增强水泥的纳米填料的质量分数之间存在正相关关系。此外,对于石墨烯增强水泥,断裂韧性值在 0.701 至 0.717 MPa 范围内 然后使用非线性断裂力学模型计算断裂韧性。纳米材料被证明可以桥接纳米级空气空隙,导致孔隙细化,并降低孔隙率和吸水率。在水泥纳米复合材料中观察到断裂韧性的提高,断裂韧性与石墨烯增强水泥的纳米填料的质量分数之间存在正相关关系。此外,对于石墨烯增强水泥,断裂韧性值在 0.701 至 0.717 MPa 范围内 然后使用非线性断裂力学模型计算断裂韧性。纳米材料被证明可以桥接纳米级空气空隙,导致孔隙细化,并降低孔隙率和吸水率。在水泥纳米复合材料中观察到断裂韧性的提高,断裂韧性与石墨烯增强水泥的纳米填料的质量分数之间存在正相关关系。此外,对于石墨烯增强水泥,断裂韧性值在 0.701 至 0.717 MPa 范围内 石墨烯增强水泥的断裂韧性与纳米填料的质量分数呈正相关。此外,对于石墨烯增强水泥,断裂韧性值在 0.701 至 0.717 MPa 范围内 石墨烯增强水泥的断裂韧性与纳米填料的质量分数呈正相关。此外,对于石墨烯增强水泥,断裂韧性值在 0.701 至 0.717 MPa 范围内. 因此,这项研究说明了纳米材料在提高水泥微观结构和防水性能的同时增强水泥韧性的潜力。

本文是讨论会议问题“发明新的坚韧材料的开裂方法:断裂比摩擦更奇怪”的一部分。

更新日期:2021-06-21
down
wechat
bug