Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of fused deposition modeling process parameters using the Taguchi method to improve the tensile properties of 3D-printed polyether ether ketone
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ( IF 2.4 ) Pub Date : 2021-06-21 , DOI: 10.1177/14644207211017572
Timoumi Mohamed 1, 2 , Najoua Barhoumi 3, 4 , Khalid Lamnawar 2 , Abderrahim Maazouz 2 , Amna Znaidi 1, 2
Affiliation  

The interesting mechanical properties of polyether ether ketone give the material a place among the foremost competitors when it comes to replacing metal. Fused deposition modeling has been recognized as an alternative method to process polyether ether ketone parts. In this study, the effect of different process parameters such as nozzle, bed, and radiant temperatures as well as printing speed and layer thickness on the tensile properties of three-dimensional printed polyether ether ketone was investigated. The optimization of the tensile properties of PEEK were studied by performing a reduced number of experiments, using the experimental design method based on the Taguchi approach which limits the number of experiments to 8 instead of 32. Results showed that a decent Young’s modulus was found by setting the nozzle temperature, print speed, and bed temperatures to their high levels and by setting the layer thickness and radiant temperature to their low level. Using these parameters, a Young’s modulus of 3.5 GPa was obtained, which represents 87.5% of the value indicated in the technical sheet. With these settings, we also found a tensile strength of 45.5 MPa, which corresponds to 46.4% of the value given by the studied polyether ether ketone material. A scanning electron microscopic investigation of the porosity and interlayer adhesion, confirmed that a higher bed temperature also tended to promote adhesion between layers.



中文翻译:

使用田口法优化熔融沉积建模工艺参数以提高 3D 打印聚醚醚酮的拉伸性能

在替代金属方面,聚醚醚酮有趣的机械性能使该材料成为最重要的竞争对手之一。熔融沉积建模已被公认为加工聚醚醚酮零件的替代方法。在这项研究中,研究了不同工艺参数,如喷嘴、床和辐射温度以及印刷速度和层厚对三维印刷聚醚醚酮拉伸性能的影响。通过减少实验次数来研究 PEEK 拉伸性能的优化,使用基于田口方法的实验设计方法将实验次数限制为 8 次而不是 32 次。结果表明,通过以下方式找到了合适的杨氏模量设置喷嘴温度、打印速度、通过将层厚和辐射温度设置为低水平,可以将床温调至较高水平。使用这些参数,获得了 3.5 GPa 的杨氏模量,这是技术资料中所示值的 87.5%。在这些设置下,我们还发现拉伸强度为 45.5 MPa,相当于所研究的聚醚醚酮材料给出的值的 46.4%。孔隙率和层间附着力的扫描电子显微镜研究证实,较高的床温也倾向于促进层间附着力。在这些设置下,我们还发现拉伸强度为 45.5 MPa,相当于所研究的聚醚醚酮材料给出的值的 46.4%。孔隙率和层间附着力的扫描电子显微镜研究证实,较高的床温也倾向于促进层间附着力。在这些设置下,我们还发现拉伸强度为 45.5 MPa,相当于所研究的聚醚醚酮材料给出的值的 46.4%。孔隙率和层间附着力的扫描电子显微镜研究证实,较高的床温也倾向于促进层间附着力。

更新日期:2021-06-21
down
wechat
bug