当前位置: X-MOL 学术arXiv.cs.NA › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient and accurate KAM tori construction for the dissipative spin-orbit problem using a map reduction
arXiv - CS - Numerical Analysis Pub Date : 2021-06-16 , DOI: arxiv-2106.09175
Renato Calleja, Alessandra Celletti, Joan Gimeno, Rafael de la Llave

We consider the dissipative spin-orbit problem in Celestial Mechanics, which describes the rotational motion of a triaxial satellite moving on a Keplerian orbit subject to tidal forcing and "drift". Our goal is to construct quasi-periodic solutions with fixed frequency, satisfying appropriate conditions. With the goal of applying rigorous KAM theory, we compute such quasi-periodic solution with very high precision. To this end, we have developed a very efficient algorithm. The first step is to compute very accurately the return map to a surface of section (using a high order Taylor's method with extended precision). Then, we find an invariant curve for the return map using recent algorithms that take advantage of the geometric features of the problem. This method is based on a rapidly convergent Newton's method which is guaranteed to converge if the initial error is small enough. So, it is very suitable for a continuation algorithm. The resulting algorithm is quite efficient. We only need to deal with a one dimensional function. If this function is discretized in $N$ points, the algorithm requires $O(N \log N) $ operations and $O(N) $ storage. The most costly step (the numerical integration of the equation along a turn) is trivial to parallelize. The main goal of the paper is to present the algorithms, implementation details and several sample results of runs. We also present both a rigorous and a numerical comparison of the results of averaged and not averaged models.

中文翻译:

使用地图缩减解决耗散自旋轨道问题的有效且准确的 KAM 环构造

我们考虑天体力学中的耗散自旋轨道问题,该问题描述了在受潮汐力和“漂移”影响的开普勒轨道上移动的三轴卫星的旋转运动。我们的目标是构造具有固定频率、满足适当条件的准周期解。为了应用严格的 KAM 理论,我们以非常高的精度计算了这种准周期解。为此,我们开发了一种非常高效的算法。第一步是非常准确地计算到截面表面的返回图(使用具有扩展精度的高阶泰勒方法)。然后,我们使用利用问题几何特征的最新算法找到返回图的不变曲线。该方法基于快速收敛的牛顿 如果初始误差足够小,s 方法保证收敛。因此,它非常适用于延续算法。由此产生的算法非常有效。我们只需要处理一个一维函数。如果这个函数被离散化为 $N$ 点,则算法需要 $O(N\log N) $ 操作和 $O(N) $ 存储。最昂贵的步骤(沿转弯对方程进行数值积分)是微不足道的并行化。本文的主要目标是展示算法、实现细节和几个运行的示例结果。我们还对平均模型和非平均模型的结果进行了严格的数值比较。我们只需要处理一个一维函数。如果这个函数被离散化为 $N$ 点,则算法需要 $O(N\log N) $ 操作和 $O(N) $ 存储。最昂贵的步骤(沿转弯对方程进行数值积分)是微不足道的并行化。本文的主要目标是展示算法、实现细节和几个运行的示例结果。我们还对平均和非平均模型的结果进行了严格的数值比较。我们只需要处理一个一维函数。如果这个函数被离散化为 $N$ 点,则算法需要 $O(N\log N) $ 操作和 $O(N) $ 存储。最昂贵的步骤(沿转弯对方程进行数值积分)是微不足道的并行化。本文的主要目标是展示算法、实现细节和几个运行的示例结果。我们还对平均模型和非平均模型的结果进行了严格的数值比较。实现细节和运行的几个示例结果。我们还对平均模型和非平均模型的结果进行了严格的数值比较。实现细节和运行的几个示例结果。我们还对平均模型和非平均模型的结果进行了严格的数值比较。
更新日期:2021-06-18
down
wechat
bug